Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E

Total Page:16

File Type:pdf, Size:1020Kb

Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E DOI: 10.1590/0004-282X20160101 VIEW AND REVIEW Are astrocytes executive cells within the central nervous system? ¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central? Roberto E. Sica1, Roberto Caccuri1, Cecilia Quarracino1, Francisco Capani1 ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. Keywords: astrocytes; physiology; central nervous system; neurodegenerative diseases. RESUMEN Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía. Esta hipótesis se sustenta en hallazgos que demostraron que la muerte neuronal que en ellas ocurre es debida al compromiso de células no-neuronales que juegan rol principal en su iniciación y desarrollo. Más aún, observaciones recientes señalan que los astrocitos podrían estar implicados en la patogenia de algunas enfermedades psiquiátricas. Palabras clave: astrocitos; fisiología; sistema nervioso central; enfermedades neurodegenerativas. The physiological properties of astrocytes have been the homeostasis of the CNS extracellular medium6, the initiation subject of comprehensive reviews written in the last few of the inflammatory and immune responses7 and the build- years1, while other authors have highlighted the role that as- ing up of barriers between normal and damaged tissues8. trocytes play in the development of diseases previously at- Astrocytes can behave like phagocytic cells9, they sense the 2,3 10 tributed solely to neurons . partial pressure of O2 within the CNS and they can trans- Our aim is to present a brief overview of the interplay form into neurons when the brain is in need of rebuilding between astrocytes and neurons in normal and pathological damaged functional neural networks contributing to ner- conditions within the central nervous system (CNS). vous tissue repair11. Therefore, we believe that the astrocyte deserves to be considered, in its own right, one of the main players orchestrating fundamental functions within the CNS. ASTROCYTES IN PHYSIOLOGY Since Ramon y Cajal’s neuron theory was accepted in 1889, most researchers thought that neurons were the most Several investigations have described the capabilities of valuable cells in the functions performed by the CNS. If we the astrocytes in handling part of the workload of the CNS. critically analyze their properties, the foremost is their capac- They modulate the myelinating capacity of the oligoden- ity to convey messages at high speed by propagating action drocytes4, the synaptic cross-talk amongst neurons5, the potentials (APs) that travel through their dendrites, bodies 1Universidad de Buenos Aires, Escuela de Medicina, Instituto de Investigaciones Cardiológicas, Buenos Aires, Argentina. Correpondence: Roberto E. Sica; ININCA. Marcelo T. de Alvear 2480; ZIP 1221 Buenos Aires, Argentina. E-mail: [email protected] Conflict of interest: There is no conflict of interest to declare. Received 04 March 2016; Accepted 16 March 2016 671 and axons membranes. The electrical activity is of such para- Observations recently reported suggest that astro- mount importance for neurons that it consumes 75% of the cytes may have an even more intimate relationship with brain cortical energy; one fifth of it is employed to sustain APs, neurons by establishing contact with them through gap another fifth accounts for the maintenance of the membrane junctions (GJ)16 that allow both types of cells to exchange resting potential, and the remainder is consumed in synaptic molecules and ions, modifying their metabolism and the dynamics. “Housekeeping”, a term coined by Attwell’s group, expression of their genes17. meaning the non-signalling tasks performed by the neurons (such as proteins shuttle and turnover, axoplasmic flows and Anatomic phylogenetic remarks other intracellular processes), consumes only 25% of the to- In humans, glial cells are the largest family of cells with- tal energy. Knowing that the brain cortical energy has been in the CNS. Friede was the first to compare the numbers of estimated in 27.2 µmol ATP/g/min, neuronal signal activity glia and neurons and found that, in humans, glia outnum- requires 20.41 µmol ATP/g/min, more than twice the energy ber neurons by 1.48, a factor known in the literature as the consumed to carry out the intraneuronal metabolic process- glia/neuron ratio (G/Nr ratio)18. In species considered phy- es12. The conclusion that can be drawn from these observa- logenetically below humans, those ratios were smaller; for tions is that the function prioritized by neurons is signalling. instance in frogs it was 0.25, chickens 0.46, mice 0.36, rab- In order to maintain the integrity of the body, most chang- bits 0.43, pigs 1.20, cows 1.22 and horses 1.23. The higher es within the environment of a living being need a response human G/Nr ratio was initially considered a peculiarity of that, in special circumstances, must be achieved effectively the human species19. and quickly, such as happens with the reflex responses that However, in contrast to those findings, Hawkins et al. are below the conscious level. These responses occur in a found a 4.54 G/Nr ratio in the cortex of the fin whale20, sug- milliseconds time scale, which has always been regarded gesting that the G/Nr ratio is not related to the phylogenetic as an exclusive domain of neurons. However, some studies position of the species. Moreover, by estimating the number have found that astrocytes can release, by exocytosis, the of neurons within the brain of several species they concluded gliotransmitter glutamate into the synaptic cleft in the same that the density of neurons decreases as the volume of the time scale that neurons employ, suggesting that astrocytes brain increases. So, the number of neurons in the brains of may have a role in the fast synaptic activity, matching the ca- mice is 142,000/mm3, in humans the figure was estimated to pacities of the neurons in this aspect13. This observation in- be about 9,500 neurons/mm3, while the brain cortex of the fin dicates that astrocytes may have a role in the elaboration of whale and the Indian elephant has about 7,000 neurons/mm3, the reflex responses. a lower value than in humans21,22. One possible explanation for the reduced number of neu- Neuron-astrocyte dynamics rons in highly-developed phylogenetic species is that the Further reasoning leads to the question: What drives the neurons are larger in size, assembled with a greater number functions of neurons when a response has to be elaborated to of dendrites and thicker axons streaming through bigger ter- adapt the conditions of the self to the environs, differentiat- ritories. These morphological neuronal changes parallel the ing the right response amongst many possibilities? We know behaviour of the astroglia, which become larger in size, both that the synaptic transmitters carry information from one in humans and in apes, with thicker and longer processes de- neuron to another that receives the message through iono- picting bigger domains encompassing up to 2 million syn- tropic receptors. We also know that there is protein traffic apses in humans compared to, for example, a maximum of within the neuron’s body that is activated by second messen- 120,000 in mice. gers that are put to work by the stimulation of metabotropic In summary, it appears that the composition of the cells receptors located on the cell and neurite membranes. The in the cerebral cortex does not explain the different behav- post-synaptic neuron receiving the information from the pre- iours between species. Hence, human intellectual properties synaptic neuron will repeat the cycle stimulating other neu- cannot be attributed either to an increased number of neu- ron until the desired goal is achieved. But, are the neurons rons or to a larger number of astrocytes. free to deliver these types of messages just by themselves? Herculano-Houzel’s findings23 support what has been Synaptic activity is modulated by astrocytes, which stated above. The
Recommended publications
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Student Academic Learning Services Nervous System Quiz
    Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves C) brain and cranial nerves D) spinal cord and spinal nerves E) brain and spinal cord 2. The peripheral nervous system consists of: A) spinal nerves only B) the brain only C) cranial nerves only D) the brain and spinal cord E) the spinal and cranial nerves 3. Which of these cells are not a type of neuroglia found in the CNS: A) astrocytes B) microglia C) Schwann cells D) ependymal cells E) oligodendrocytes 4. The Schwann cells form a myelin sheath around the: A) dendrites B) cell body C) nucleus D) axon E) nodes of Ranvier 5. The neuron processes that normally receives incoming stimuli are called: A) axons B) dendrites C) neurolemmas D) Schwann cells E) satellite cells www.durhamcollege.ca/sals Student Services Building (SSB), Room 204 905.721.2000 ext. 2491 This document last updated: 7/29/2011 Student Academic Learning Services Page 2 of 8 6. Collections of nerve cell bodies inside the PNS are called: A) ganglia B) tracts C) nerves D) nuclei E) tracts or ganglia 7. Which of the following best describes the waxy-appearing material called myelin: A) an outermembrane on a neuroglial cell B) a lipid-protein (lipoprotein) cell membrane on the outside of axons C) a mass of white lipid material that surrounds the cell body of a neuron D) a mass of white lipid material that insulates the axon of a neuron E) a mass of white lipid material that surrounds the dendrites of a neuron 8.
    [Show full text]
  • A Brief Introduction Into the Peripheral Nervous System
    A Brief Introduction into the Peripheral Nervous System Bianca Flores, PhD Candidate, Neuroscience Tuesday, October 15th, 2019 Brief overview: • What are you hoping to learn? • Subdivisions of the peripheral nervous system (PNS) • Physiology • Diseases associated with PNS • Special topics (current research at Vanderbilt) Brief question- • Is there a location in our body that does not have neurons (signals being sent to move or sense)? The body’s nervous system is made up of two parts: The Peripheral Nervous System (PNS) is divided into two parts PNS: Sensory components: • Nociception • Proprioception • Mechanoreception • Thermoception Parasympathetic vs Sympathetic PNS • Includes everything outside of the brain and spinal cord • Is divided into motor and sensory subsets • Controls the “rest and relax” and “flight or fight” responses PNS: Physiology & Anatomy Dorsal Root ganglion are sensory body of the PNS Anatomy of the PNS- Dorsal Root Ganglion How the PNS sends signals to the CNS Nerve impulses carry electrical signals Myelin sheath on surrounds to the nerve to contribute to signal propagation Myelin sheath on surrounds to the nerve to contribute to signal propagation Nerve impulses carry electrical signals PNS Physiology and Anatomy • Dorsal root ganglion are the sensory bodies of the PNS • The Ventral root is responsible for motor movement • Myelin Sheath is imperative to proper nerve function Diseases associated with the PNS: Peripheral Neuropathy What is peripheral neuropathy? Peripheral Neuropathy: -Damage to peripheral nerves
    [Show full text]
  • The Peripheral Nervous System
    The Peripheral Nervous System Dr. Ali Ebneshahidi Peripheral Nervous System (PNS) – Consists of 12 pairs of cranial nerves and 31 pairs of spinal nerves. – Serves as a critical link between the body and the central nervous system. – peripheral nerves contain an outermost layer of fibrous connective tissue called epineurium which surrounds a thinner layer of fibrous connective tissue called perineurium (surrounds the bundles of nerve or fascicles). Individual nerve fibers within the nerve are surrounded by loose connective tissue called endoneurium. Cranial Nerves Cranial nerves are direct extensions of the brain. Only Nerve I (olfactory) originates from the cerebrum, the remaining 11 pairs originate from the brain stem. Nerve I (Olfactory)- for the sense of smell (sensory). Nerve II (Optic)- for the sense of vision (sensory). Nerve III (Oculomotor)- for controlling muscles and accessory structures of the eyes ( primarily motor). Nerve IV (Trochlear)- for controlling muscles of the eyes (primarily motor). Nerve V (Trigeminal)- for controlling muscles of the eyes, upper and lower jaws and tear glands (mixed). Nerve VI (Abducens)- for controlling muscles that move the eye (primarily motor). Nerve VII (Facial) – for the sense of taste and controlling facial muscles, tear glands and salivary glands (mixed). Nerve VIII (Vestibulocochlear)- for the senses of hearing and equilibrium (sensory). Nerve IX (Glossopharyngeal)- for controlling muscles in the pharynx and to control salivary glands (mixed). Nerve X (Vagus)- for controlling muscles used in speech, swallowing, and the digestive tract, and controls cardiac and smooth muscles (mixed). Nerve XI (Accessory)- for controlling muscles of soft palate, pharynx and larynx (primarily motor). Nerve XII (Hypoglossal) for controlling muscles that move the tongue ( primarily motor).
    [Show full text]
  • Appendix A: Glossary for Section 2.1 (PDF)
    APPENDIX A GLOSSARY FOR SECTION 2.1 Sources: The Concise Columbia Encyclopedia. 1995. Columbia University Press; Solomon et al. 1993. Biology, Third Edition. Harcourt Brace Publishing astrocyte - a star-shaped cell, especially a neuroglial cell of nervous tissue. axon - the long, tubular extension of the neuron that conducts nerve impulses away from the cell body. blood-brain barrier - system of capillaries that regulates the movement of chemical substances, ions, and fluids in and out of the brain. central nervous system - the portion of the vertebrate nervous system consisting of the brain and spinal cord. cerebellum - the trilobed structure of the brain, lying posterior to the pons and medulla oblongata and inferior to the occipital lobes of the cerebral hemispheres, that is responsible for the regulation and coordination of complex voluntary muscular movement as well as the maintenance of posture and balance. cerebral cortex - the extensive outer layer of gray matter of the cerebral hemispheres, largely responsible for higher brain functions, including sensation, voluntary muscle movement, thought, reasoning, and memory. cerebrum - the large, rounded structure of the brain occupying most of the cranial cavity, divided into two cerebral hemispheres that are joined at the bottom by the corpus callosum. It controls and integrates motor, sensory, and higher mental functions, such as thought, reason, emotion, and memory. cognitive development - various mental tasks and processes (e.g. receiving, processing, storing, and retrieving information) that mediate between stimulus and response and determine problem-solving ability. demyelination - to destroy or remove the myelin sheath of (a nerve fiber), as through disease. dendrite - a branched protoplasmic extension of a nerve cell that conducts impulses from adjacent cells inward toward the cell body.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Astrocytes Are the Primary Source of Tissue Factor in the Murine Central Nervous System
    Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. M Eddleston, … , T S Edgington, N Mackman J Clin Invest. 1993;92(1):349-358. https://doi.org/10.1172/JCI116573. Research Article Hemostasis in the brain is of paramount importance because bleeding into the neural parenchyma can result in paralysis, coma, and death. Consistent with this sensitivity to hemorrhage, the brain contains large amounts of tissue factor (TF), the major cellular initiator of the coagulation protease cascades. However, to date, the cellular source for TF in the central nervous system has not been identified. In this study, analysis of murine brain sections by in situ hybridization demonstrated high levels of TF mRNA in cells that expressed glial fibrillary acidic protein, a specific marker for astrocytes. Furthermore, primary mouse astrocyte cultures and astrocyte cell lines from mouse, rat, and human constitutively expressed TF mRNA and functional protein. These data indicated that astrocytes are the primary source of TF in the central nervous system. We propose that astrocytes forming the glia limitans around the neural vasculature and deep to the meninges are intimately involved in controlling hemorrhage in the brain. Finally, we observed an increase in TF mRNA expression in the brains of scrapie-infected mice. This modulation of TF expression in the absence of hemorrhage suggested that TF may function in processes other than hemostasis by altering protease generation in normal and diseased brain. Find the latest version: https://jci.me/116573/pdf Astrocytes Are the Primary Source of Tissue Factor in the Murine Central Nervous System A Role for Astrocytes in Cerebral Hemostasis Michael Eddleston, * Juan Carlos de la Torre,* Michael B.
    [Show full text]
  • THE Mandffiular GANGLION - a NEW PERIPHERAL GANGLION of the LOCUST
    J. exp. Biol. 148, 313-324 (1990) 313 Primed in Great Britain © The Company of Biologists Limited 1990 THE MANDffiULAR GANGLION - A NEW PERIPHERAL GANGLION OF THE LOCUST BY PETER BRAUNIG Institut fiir Zoologie, Technische Universitdt Milnchen, Lichtenbergstrafle 4, D-8046 Garching, Federal Republic of Germany Accepted 22 August 1989 Summary Paired peripheral ganglia within the locust mandibular segment are described. Each mandibular ganglion contains the cell bodies of 22-25 neurones. Four of these are sensory neurones which innervate the receptor strand of one of the mandibular proprioceptors. The other neurones connect the suboesophageal ganglion with the tritocerebral lobes of the brain, and with the first ganglion of the stomatogastric nervous system, the frontal ganglion. Introduction In addition to the chain of segmental ganglia of the central nervous system (CNS), insects possess a stomatogastric nervous system which innervates the foregut. It consists of the unpaired frontal and hypocerebral ganglia and the paired paraventricular ganglia. It is connected with the central nervous system (CNS) via the frontal connectives, which link the frontal ganglion to both tritocerebral lobes of the supraoesophageal ganglion, or brain (see Fig. 1). Nerve cells making connections with the frontal ganglion have been found chiefly in the brain, but there are also a few in the suboesophageal ganglion (Aubele and Klemm, 1977; Gundel and Penzlin, 1978; Kirby etal. 1984). Thus, both head ganglia appear to participate in the control of the stomatogastric nervous system. In the course of a study of the peripheral nervous system of the locust suboesophageal ganglion (Braunig, 1987), peculiar structures were found in association with one of the major branches of the mandibular nerve.
    [Show full text]
  • Astrocyte Failure As a Cause of CNS Dysfunction
    Molecular Psychiatry (2000) 5, 230–232 2000 Macmillan Publishers Ltd All rights reserved 1359-4184/00 $15.00 www.nature.com/mp NEWS & VIEWS Astrocyte failure as a cause of CNS dysfunction All insults to the central nervous systems (CNS), expressing HSV-Tk from the mouse Gfap promoter, including injury, ischemia, infection and degenerative reactive, transgene-expressing astrocytes adjacent to a disease are invariably accompanied by the hypertro- forebrain stab injury are ablated by GCV.8,9 These and phy, altered gene expression and proliferation of astro- other studies have demonstrated the essential nature of cytes, a process commonly referred to as ‘reactive astrocyte functions in a number of contexts related to astrocytosis’. While much is known about molecules the response to injury, and highlighted how astrocyte that either influence, or are produced by, reactive astro- failure might lead to CNS dysfunction in various ways. cytes,1,2 the functions of these cells are incompletely understood. Astrocytes are the most numerous cells in Astrocytes, the blood–brain barrier and interstitial the vertebrate central nervous system (CNS), and vari- edema ous functions have been ascribed to them in the unin- jured CNS, including: provision of structural support The anatomical correlate of the BBB is thought to for neural elements (neuro-glia = neural ‘glue’); homeo- reside in tight junctions between endothelial cells of static maintenance of the extracellular ionic environ- cerebral capillaries, which are of high electrical resist- ment and pH;
    [Show full text]
  • Glia As a Link Between Neuroinflammation and Neuropathic Pain
    http://dx.doi.org/10.4110/in.2012.12.2.41 REVIEW ARTICLE pISSN 1598-2629 eISSN 2092-6685 Glia as a Link between Neuroinflammation and Neuropathic Pain Mithilesh Kumar Jha, Sangmin Jeon and Kyoungho Suk* Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea Contemporary studies illustrate that peripheral injuries acti- clude astrocytes and oligodendrocytes (2). Glial cells that vate glial components of the peripheral and central cellular were, up to several years ago, considered the ٘forgotten brain circuitry. The subsequent release of glial stressors or activat- cells,ٙ or neglected stepchildren of neuroscience, now act as ing signals contributes to neuropathic pain and neuroinflam- orchestrators in the tetrapartite synapse, and control of their mation. Recent studies document the importance of glia in activation state is crucial to the integrity of CNS function. the development and persistence of neuropathic pain and Recent technical advances and increased interest in elucidat- neuroinflammation as a connecting link, thereby focusing at- ing the role of non-neuronal cells of the CNS in both the tention on the glial pathology as the general underlying fac- physiological and pathophysiologial processes have cata- tor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a pulted these cells into the forefront of neuroscience research. key process in nervous system disorders involving the re- Glial cells do not conduct nerve impulses, and they provide lease of strong pro-inflammatory cytokines, which can trig- structural support for the brain, assisting in nervous system ger worsening of multiple disease states.
    [Show full text]
  • Glial Repair in an Insect Central Nervous System: Effects of Surgical Lesioning’
    0270-6474/84/0411-2689$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 11, pp. 2689-2697 Printed in U.S.A. November 1984 GLIAL REPAIR IN AN INSECT CENTRAL NERVOUS SYSTEM: EFFECTS OF SURGICAL LESIONING’ J. E. TREHERNE,2 J. B. HARRISON, J. M. TREHERNE, AND N. J. LANE Agricultural Food Reserve Council Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, CB2 3EJ United Kingdom Received December 27, 1983; Revised April 23, 1984; Accepted May 8, 1984 Abstract Surgical lesioning of central nervous connectives in the cockroach (Periplaneta americana (L.)), although causing only local glial damage, resulted in complex and prolonged cellular changes. An early response to mechanical disruption was the appearance of granule-containing cells within the damaged perineurium, among adjacent,, undamaged, perineurial cells, and between glial processes deep within the connectives. These cells, which were strikingly similar to hemocytes, were clearly involved in phagocytic activity and persisted in the damaged regions for more than a month after lesioning. There was only a slow restoration of organized perineurial glia and re-establishment of the blood-brain barrier, as indicated by the exclusion of an extracellular tracer, ionic lanthanum. These observations contrast with the speedy, ordered repair of the neuroglia observed following selective glial disruption and suggest that undamaged axons and/or the extracellular matrix exert a profound influence on the mechanisms of glial repair. It is now increasingly recognized that the supporting cells of has a number of advantages: notably, relative structural sim- the brain, the neuroglia, serve a number of important physio- plicity, its accessibility to electrophysiological study, and the logical roles.
    [Show full text]
  • Nervous System - Neurons
    Nervous System - Neurons Biol 105 Chapter 7 Outline I. Nervous system function II. Central and peripheral nervous system III. Nervous system cells IV. Myelinated neurons V. Nerve signal transmission VI. Nerve Synapse Copyright © 2009 Pearson Education, Inc. Nervous Tissues . Nervous tissue functions to conduct messages throughout the body. When nerve cells are stimulated, an electrical signal quickly travels through the nerve cell to the nerve ending, triggering events. Copyright © 2009 Pearson Education, Inc. Nervous System . Includes nervous tissue and sensory organs. Nervous system functions to: . Sense the environment – it receives information from both outside and inside the body. Process the information it receives. Respond to information – send out orders. Copyright © 2009 Pearson Education, Inc. Two Parts of the Nervous System 1. Central Nervous System (CNS) . Brain and Spinal Cord. 2. Peripheral Nervous System (PNS) . Nervous tissue outside brain and spine. Sense organs. Copyright © 2009 Pearson Education, Inc. Central Nervous System Peripheral Copyright © 2009 Pearson Education, Inc. Figure 8.1 The nervous system Copyright © 2009 Pearson Education, Inc. Nervous System Cells . Two types of nervous tissue cells. Neurons – The cells that are responsible for transmitting messages. Neuroglial Cells – Cells that support the neurons. Copyright © 2009 Pearson Education, Inc. Neuroglial Cells . Microglia – Immune system cells, engulf bacteria and cellular debris. Astrocytes – Provide nutrients to neurons. Oligodenrocytes and Schwann Cells – Form myelin sheaths. Copyright © 2009 Pearson Education, Inc. Copyright © 2009 Pearson Education, Inc. Parts of a Neuron . Cell body – contains the nucleus, main body of cell. Dendrites – projections from the cell body that carry messages to the cell body. Axon – one projection that carries messages away from the cell body (can be very long).
    [Show full text]