THE Mandffiular GANGLION - a NEW PERIPHERAL GANGLION of the LOCUST
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization -
Specification of Optic Nerve Oligodendrocyte Precursors by Retinal Ganglion Cell Axons
The Journal of Neuroscience, July 19, 2006 • 26(29):7619–7628 • 7619 Cellular/Molecular Specification of Optic Nerve Oligodendrocyte Precursors by Retinal Ganglion Cell Axons Limin Gao and Robert H. Miller Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106 Cell fate commitment in the developing CNS frequently depends on localized cell–cell interactions. In the avian visual system the optic nerve oligodendrocytes are derived from founder cells located at the floor of the third ventricle. Here we show that the induction of these founder cells is directly dependent on signaling from the retinal ganglion cell (RGC) axons. The appearance of oligodendrocyte precursor cells (OPCs) correlates with the projection of RGC axons, and early eye removal dramatically reduces the number of OPCs. In vitro signaling from retinal neurites induces OPCs in responsive tissue. Retinal axon induction of OPCs is dependent on sonic hedgehog (Shh) andneuregulinsignaling,andtheinhibitionofeithersignalreducesOPCinductioninvivoandinvitro.ThedependenceofOPCsonretinal axonal cues appears to be a common phenomenon, because ocular retardation (orJ) mice lacking optic nerve have dramatically reduced OPCs in the midline of the third ventricle. Key words: oligodendrocyte precursors; optic nerve; axon induction; sonic hedgehog; neuregulin; retinal ganglion cells Introduction contributes to the specification of ventral midline cells (Dale et al., During development the oligodendrocytes, the myelinating cells 1997); however, OPCs arise later -
Early Neuronal Processes Interact with Glia to Establish a Scaffold For
bioRxiv preprint doi: https://doi.org/10.1101/754416; this version posted August 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Early neuronal processes interact with glia to establish a scaffold for orderly innervation of the cochlea Running Title: Glia and early cochlear wiring N. R. Druckenbrod1, E. B. Hale, O. O. Olukoya, W. E. Shatzer, and L.V. Goodrich* Department of Neurobiology, Harvard Medical School, Boston, MA, 02115 1Current address: Decibel Therapeutics, Boston, Ma, 02215 *correspondence should be addressed to [email protected] Keywords: neuron-glia interactions, axon guidance, spiral ganglion neuron, cochlea Authors’ contributions: This study was conceived of and designed by NRD and LVG. NRD, EBH, OOO, and WES performed experiments and analyzed results. LVG analyzed results and wrote the manuscript. bioRxiv preprint doi: https://doi.org/10.1101/754416; this version posted August 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary: Although the basic principles of axon guidance are well established, it remains unclear how axons navigate with high fidelity through the complex cellular terrains that are encountered in vivo. To learn more about the cellular strategies underlying axon guidance in vivo, we analyzed the developing cochlea, where spiral ganglion neurons extend processes through a heterogeneous cellular environment to form tonotopically ordered connections with hair cells. -
Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves
Chapter 13 Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves Posterior Spinous process of vertebra Posterior root Deep muscles of back Posterior ramus Spinal cord Transverse process of vertebra Posterior root ganglion Spinal nerve Anterior ramus Meningeal branch Communicating rami Anterior root Vertebral body Sympathetic ganglion Anterior General Anatomy of Nerves and Ganglia • Spinal cord communicates with the rest of the body by way of spinal nerves • nerve = a cordlike organ composed of numerous nerve fibers (axons) bound together by connective tissue – mixed nerves contain both afferent (sensory) and efferent (motor) fibers – composed of thousands of fibers carrying currents in opposite directions Anatomy of a Nerve Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epineurium Perineurium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Endoneurium Nerve Rootlets fiber Posterior root Fascicle Posterior root ganglion Anterior Blood root vessels Spinal nerve (b) Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved Blood vessels Fascicle Epineurium Perineurium Unmyelinated nerve fibers Myelinated nerve fibers (a) Endoneurium Myelin General Anatomy of Nerves and Ganglia • nerves of peripheral nervous system are ensheathed in Schwann cells – forms neurilemma and often a myelin sheath around the axon – external to neurilemma, each fiber is surrounded by -
Spinal Cord Organization
Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges. -
Digital Neuroanatomy
DIGITAL NEUROANATOMY LM NEUROHISTOLOGY George R. Leichnetz, Ph.D. Professor, Department of Anatomy & Neurobiology Virginia Commonwealth University 2004 Press the Å and Æ keys on your keyboard to navigate through this lecture There are three morphological types of neurons in the nervous system: unipolar, bipolar, and multipolar. While all three types can be found in the PNS, the CNS only contains multipolar neurons. CNS multipolar neurons vary greatly in morphology: eg. spinal cord motor neurons, pyramidal cells of cerebral cortex, Purkinje cells of cerebellar cortex. The supportive cells of the CNS are neuroglia: astrocytes, oligodendrocytes, and microglia. Oligodendrocytes myelinate CNS axons, while Schwann cells myelinate PNS axons. Protoplasmic astrocytes predominate in CNS gray matter, while fibrous astrocytes predominate in CNS white matter. The ventral horn of the spinal cord Lumbar Spinal Cord contains multipolar motor neurons. Dorsal White Horn Matter Gray Matter Ventral Kluver- Horn Barrera Stain (LFB & CV) Cell bodies of motor neurons Dendrite Gray Matter Dendrite Perineuronal H & E oligodendrocyte Stain Nucleus, nucleolus Abundant Nissl substance Dorsal root Dorsal root ganglion Ventral root Gray Matter: contains White Matter: cell bodies of neurons contains x-sections of myelinated axons Multipolar motor neurons Silver Stain of the ventral horn Large multipolar motor neurons of the spinal cord ventral horn: see nucleus, nucleolus, abundant Nissl substance, multiple tapering processes (dendrites). The axon hillock (origin of axon from cell body) lacks Nissl. Nucleus Axon hillock dendrites Nucleolus Nissl substance (RER) Kluver-Barrera Stain (Luxol Fast Blue and Cresyl Violet) Thoracic Spinal Cord The nucleus dorsalis of Clarke, located in the base of the dorsal horn of the thoracic spinal cord, contains multipolar neurons whose nucleus is eccentric and Nissl around the periphery of the cell body (as if it were chromatolytic). -
Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E
DOI: 10.1590/0004-282X20160101 VIEW AND REVIEW Are astrocytes executive cells within the central nervous system? ¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central? Roberto E. Sica1, Roberto Caccuri1, Cecilia Quarracino1, Francisco Capani1 ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. Keywords: astrocytes; physiology; central nervous system; neurodegenerative diseases. RESUMEN Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía. -
Gathering at the Nodes
RESEARCH HIGHLIGHTS GLIA Gathering at the nodes Saltatory conduction — the process by which that are found at the nodes of Ranvier, where action potentials propagate along myelinated they interact with Na+ channels. When the nerves — depends on the fact that voltage- authors either disrupted the localization of gated Na+ channels form clusters at the nodes gliomedin by using a soluble fusion protein of Ranvier, between sections of the myelin that contained the extracellular domain of sheath. New findings from Eshed et al. show neurofascin, or used RNA interference to that Schwann cells produce a protein called suppress the expression of gliomedin, the gliomedin, and that this is responsible for characteristic clustering of Na+ channels at the clustering of these channels. the nodes of Ranvier did not occur. The formation of the nodes of Ranvier is Aggregation of the domain of gliomedin specified by the myelinating cells, not the that binds neurofascin and NrCAM on the axons, and an important component of this surface of purified neurons also caused process in the peripheral nervous system the clustering of neurofascin, Na+ channels is the extension of microvilli by Schwann and other nodal proteins. These findings cells. These microvilli contact the axons at support a model in which gliomedin on the nodes, and it is here that the Schwann References and links Schwann cell microvilli binds to neurofascin ORIGINAL RESEARCH PAPER Eshed, Y. et al. Gliomedin cells express the newly discovered protein and NrCAM on axons, causing them to mediates Schwann cell–axon interaction and the molecular gliomedin. cluster at the nodes of Ranvier, and leading assembly of the nodes of Ranvier. -
11 Introduction to the Nervous System and Nervous Tissue
11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system. -
Astrocytes Are the Primary Source of Tissue Factor in the Murine Central Nervous System
Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. M Eddleston, … , T S Edgington, N Mackman J Clin Invest. 1993;92(1):349-358. https://doi.org/10.1172/JCI116573. Research Article Hemostasis in the brain is of paramount importance because bleeding into the neural parenchyma can result in paralysis, coma, and death. Consistent with this sensitivity to hemorrhage, the brain contains large amounts of tissue factor (TF), the major cellular initiator of the coagulation protease cascades. However, to date, the cellular source for TF in the central nervous system has not been identified. In this study, analysis of murine brain sections by in situ hybridization demonstrated high levels of TF mRNA in cells that expressed glial fibrillary acidic protein, a specific marker for astrocytes. Furthermore, primary mouse astrocyte cultures and astrocyte cell lines from mouse, rat, and human constitutively expressed TF mRNA and functional protein. These data indicated that astrocytes are the primary source of TF in the central nervous system. We propose that astrocytes forming the glia limitans around the neural vasculature and deep to the meninges are intimately involved in controlling hemorrhage in the brain. Finally, we observed an increase in TF mRNA expression in the brains of scrapie-infected mice. This modulation of TF expression in the absence of hemorrhage suggested that TF may function in processes other than hemostasis by altering protease generation in normal and diseased brain. Find the latest version: https://jci.me/116573/pdf Astrocytes Are the Primary Source of Tissue Factor in the Murine Central Nervous System A Role for Astrocytes in Cerebral Hemostasis Michael Eddleston, * Juan Carlos de la Torre,* Michael B. -
Histochemical Evidence for Microglia-Like Macrophages in the Rat Trigeminal Ganglion
J. Anat. (1993) 183, pp. 475-481, with 5 figures Printed in Great Britain 475 Histochemical evidence for microglia-like macrophages in the rat trigeminal ganglion J. A. GLENN, J. B. SONCEAU, H. J. WYNDER* AND W. E. THOMAS Department of Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio, USA (Accepted 8 April 1993) ABSTRACT Of the 4 major cell types in CNS parenchyma, microglia appear to serve the unique functional role of tissue macrophages. The distribution of equivalent cells in the PNS is unclear. Recently, the B4 isolectin of Griffonia simplicifolia was shown to bind selectively to microglia as well as to other macrophages under specific conditions. In the present study, this lectin was used to assess the existence of macrophages in the rat trigeminal ganglion. Vibratome sections of fixed ganglia were incubated with horseradish peroxidase (HRP)-conjugated isolectin, an HRP reaction subsequently performed, and sections processed for histology and viewed by light microscopy. Staining activity was found to be localised to a population of cells throughout the ganglion. These cells possessed small oval somata and several thin crenated processes, an appearance typical of ramified microglia. Stained cells also exhibited a regular, evenly spaced tissue distribution similar to CNS microglia. Finally, similar cells were also labelled by thiamine pyrophosphatase histochemistry, a cellular marker for CNS microglia/macrophages. It was concluded that there are microglia-like macrophages in the trigeminal ganglion and that these cells may function in immune reactions. responding alterations in cellular morphology INTRODUCTION (Thomas, 1992). As a unique component of neural tissue, microglial In possibly the best studied example of microglial cells have been supported by recent studies as intrinsic function as macrophages, involving the facial nucleus macrophages and thus may function in immune of the CNS, it has been demonstrated that these cells reactions in this tissue. -
Oligodendrocytes and CNS Myelin Are Nonpermissive Substrates for Neurite Growth and Fibroblast Spreading in Vi&O
The Journal of Neuroscience, July 1988, 8(7): 2381-2393 Oligodendrocytes and CNS Myelin Are Nonpermissive Substrates for Neurite Growth and Fibroblast Spreading in vi&o Martin E. Schwab and Pica Caroni Brain Research Institute of the University of Zurich, CH-8029 Zurich, Switzerland To study the interaction of neurons with CNS glial cells, (Tello, 1911; Ramon y Cajal, 1928; Benfey and Aguayo, 1982; dissociated sympathetic or sensory ganglion cells or fetal Richardson et al., 1984; So and Aguayo, 1985). These studies retinal cells were plated onto cultures of dissociated optic assigneda crucial role to the microenvironment of the growing nerve glial cells of young rats. Whereas astrocytes favored fibers, whereby peripheral nerve tissue should allow, support, neuron adhesion and neurite outgrowth, oligodendrocytes or provoke neurite regeneration. The involvement of neuro- differed markedly in their properties as neuronal substrates. trophic and neurotropic factors-produced by Schwann cellsbut Immature (O,+, A,B,+, GalCm) oligodendrocytes were fre- not by CNS glia-was suggested60 years ago by Ramon y Cajal quently contacted by neurons and neurites. In contrast, dif- (1928). In fact, a marked increase in the production of neuro- ferentiated oligodendrocytes (O,+, A$-, GalC+) represented trophic factors and cell adhesionmolecules by Schwann cells in a nonpermissive substrate for neuronal adhesion and neurite responseto denervation has recently been observed (Richardson growth. When neuroblastoma cells or 3T3 fibroblasts were and Ebendal, 1982; Longo et al., 1984; Abrahamson et al., 1986; plated into optic nerve glial cultures, the same differences Daniloff et al., 1986). However, neurotrophic factors are also were observed; differentiated oligodendrocytes were non- presentin developing and adult CNS, and increasedneurotroph- permissive for cell adhesion, neurite growth, or fibroblast ic activities were found at sites of CNS lesions (Barde et al., spreading.