Report of Contributions

Total Page:16

File Type:pdf, Size:1020Kb

Report of Contributions SAIP 2011 Report of Contributions https://events.saip.org.za/e/saip2011 SAIP 2011 / Report of Contributions Defects and Reconstructions in El … Contribution ID: 2 Type: Poster Presentation Defects and Reconstructions in Electron Beam Irradiated Graphene Sheets Wednesday, 13 July 2011 17:00 (2 hours) <p>Graphene characterization and device fabrication often require extensive use of the scanning electron microscopy (SEM) and tunneling electron microscopy (TEM). These techniques involve electron beam irradiation that usually causes defects in materials under investigation. The radia- tion induced defects may lead to significant damage to the material which may alter its properties, normally an undesirable phenomenon. However, recent experiments show that electron radiation can have beneficial effects in materials. Graphenic materials have the ability to reorganize their structures under irradiation like no other materials. This property can find application in radiation hard electronics owing to the technological importance of graphenic materials. Here we report the Raman and scanning tunneling microscopy (STM) results of pristine and heat treated electron -beam irradiated graphene sheets (mono-layer and double layers) to demonstrate graphenic recon- structions. STM creates images of the charge density of electrons at the Fermi level such that all surface atoms can be visible. Level (Hons, MSc, <br> &nbsp; PhD, other)? PhD Consider for a student <br> &nbsp; award (Yes / No)? Yes Would you like to <br> submit a short paper <br> for the Conference <br> Pro- ceedings (Yes / No)? No Primary author: Mr FABIANE, Mopeli (University of Pretoria PhD Student) Presenter: Mr FABIANE, Mopeli (University of Pretoria PhD Student) Session Classification: Poster1 Track Classification: Track A - Condensed Matter Physics and Material Science October 2, 2021 Page 1 SAIP 2011 / Report of Contributions Simulating chorus generation via … Contribution ID: 3 Type: Poster Presentation Simulating chorus generation via Particle-in-cell simulations Thursday, 14 July 2011 17:00 (2 hours) <p>Chorus emissions are whistler mode waves propagating through the Earth’s magnetosphere in two distinct frequency bands, typically in the range of 0.1-0.8 fce, where fce is the equatorial electron gyro-frequency. Chorus consists of discrete elements, which are normally rising tones, each of which lasts for a few tenths of a second. Chorus is predominantly observed during the onset of the substorm expansion phase when energetic electrons are injected into the magnetosphere. As these electrons drift eastward around towards noon, their distribution becomes unstable tothe amplifiation of whistler mode waves. It is thought that the amplification process proceeds viathe Doppler-shifted cyclotron resonance interaction. Particle-in-cell (PIC) simulations, which simulate the motion of groups of similar particles on a two dimensional grid subject to the self-consistent electric and magnetic fields generated by their spatial distribution and motion, are used to simulate the amplification of whistler-mode waves propagating along the magnetic field. A population of electrons having a velocity distribution with a thermal anisotropy is injected into the plasma and the growth of the resulting waves is investigated. Level (Hons, MSc, <br> &nbsp; PhD, other)? PhD Consider for a student <br> &nbsp; award (Yes / No)? Yes Would you like to <br> submit a short paper <br> for the Conference <br> Pro- ceedings (Yes / No)? No Primary author: Mr KOEN, Etienne (Hermanus Magnetic Observatory) Co-authors: Dr COLLIER, Andrew (University of KwaZulu Natal); Ms VAN ZYL, Marlie (University of KwaZulu Natal); Dr MAHARAJ, Shimul (Hermanus Magnetic Observatory) Presenter: Ms VAN ZYL, Marlie (University of KwaZulu Natal) Session Classification: Poster2 Track Classification: Track D2 - Space Science October 2, 2021 Page 2 SAIP 2011 / Report of Contributions Numerical Field Analysis of the M … Contribution ID: 4 Type: Oral Presentation Numerical Field Analysis of the Magnets for a proposed Ionisation Beam Profile Monitor for High Current Synchrotron and Cooler Rings. Friday, 15 July 2011 11:15 (15 minutes) <p>iThemba LABS was requested by the Institut für Kernphysik at Forschungszentrum Jülich, Germany, to design and calculate a magnet system for a proposed non-destructive Ionization Beam Profile Monitor (IBPM) that can measure beam profiles using the secondary ions produced inthe rest gas, planned to be implemented with the FAIR-GSI project in Darmstadt Apart from the geometrical restrictions by the available space, the main requirements for the mag- net system are to comply with the specified field intensity and homogeneity at the plane ofmea- surement and to deliver the primary beam unchanged and aligned with the original beam direction within the GSI storage ring. The calculated magnets for the IBPM consists of four window-frame, room-temperature, water- cooled, laminated, dipole DC-electromagnets in line with the primary beam. The inner two dipoles of the set are respectively used for horizontal and vertical beam profile analysis and the correct delivery of the beam from the system is facilitated with the aid of two corrector magnets. The magnets are mounted outside and around the vacuum chamber that contains other essential com- ponents and therefore will have unusually large pole gaps that are in the order of 0.5 m, which, together with the relative short drift lengths between the magnets, cause significant interference between the magnetic flux distributions of the magnets. This necessitated the use of 3D numerical field analysis that incorporates al the magnets. The field homogeneities in the regions where the beam profiles are to be measured werefoundto be very sensitive to the magnet geometries and layout, but a workable solution was found and the calculated results of these magnets and multi-pole and ion beam optics analysis of the system will be presented. Level (Hons, MSc, <br> &nbsp; PhD, other)? All Consider for a student <br> &nbsp; award (Yes / No)? No Would you like to <br> submit a short paper <br> for the Conference <br> Pro- ceedings (Yes / No)? No Primary author: Dr DE VILLIERS, John Garrett (iThemba LABS) Co-authors: Mr BOEHME, Christian (IKP, FZ-Jülich); Dr CONRADIE, J. L. (iThemba LABS); Prof. October 2, 2021 Page 3 SAIP 2011 / Report of Contributions Numerical Field Analysis of the M … DIETRICH, Jürgen (IKP, FZ-Jülich); Dr FORCK, Peter (GSI, Darmstadt); Mr GIACOMINI, T (GSI, Darm- stadt); Dr KAMERDZHIEV, Vsevolod (IKP, FZ-Jülich) Presenter: Dr DE VILLIERS, John Garrett (iThemba LABS) Session Classification: Applied Track Classification: Track F - Applied and Industrial Physics October 2, 2021 Page 4 SAIP 2011 / Report of Contributions PLASMON: Data Assimilation of t … Contribution ID: 5 Type: Poster Presentation PLASMON: Data Assimilation of the Earth’s Plasmasphere Thursday, 14 July 2011 17:00 (2 hours) <p>The principal source and loss mechanisms in the Earth’s radiation belts are currently notcom- pletely understood. Loss rates are important since they determine the duration of exposure of satellites to enhanced radiation conditions during a geomagnetic storm. The dominant loss pro- cess is relativistic electron precipitation via resonant interactions with a variety of wave modes. These interactions are governed by the characteristics of the plasmasphere. Current models pro- vide an inadequate representation of the spatial and temporal evolution of the plasmasphere. In situ measurements of the plasmasphere provide only local characteristics and are thus unable to yield a complete global picture. Ground based measurements, based on the analysis of Very Low Frequency (VLF) whistlers and Field Line Resonances (FLRs), are able to describe large sections of the plasmasphere, extending over significant radial distances and many hours of local time. These measurements provide electron number and plasma mass densities. PLASMON is a funded FP7 project between 11 international partners. PLASMON intends to assim- ilate near real time measurements of plasmaspheric densities into a dynamic plasmasphere model. The VLF whistler analyses will be conducted by automatic retrieval of equatorial electron densities using data from AWDAnet. Equatorial mass densities will be constructed from FLR measurements along meridional magnetometer chains. The resulting model will facilitate the prediction ofpre- cipitation rates. The predicted rates will be compared to observations from the AARDDVARK network. Level (Hons, MSc, <br> &nbsp; PhD, other)? Other. Consider for a student <br> &nbsp; award (Yes / No)? No. Would you like to <br> submit a short paper <br> for the Conference <br> Pro- ceedings (Yes / No)? No. Primary author: COLLIER, Andrew (Hermanus Magnetic Observatory) Co-authors: JORGENSEN, Anders (New Mexico Institute of Mining and Technology); HEILIG, Balázs (Eötvös Loránd Geophysical Institute); HOLZWORTH, Bob (University of Washington); RODGER, Craig (University of Otago); REDA, Jan (Institute of Geophysics, Polish Academy of Sciences); MAN- NINEN, Jyrki (University of Oulu); LICHTENBERGER, János (Eötvös Loránd University); CLILVERD, Mark (British Antarctic Survey); VELLANTE, Massimo (University of L’Aquila); FRIEDEL, Reiner (Los Alamos National Laboratory) October 2, 2021 Page 5 SAIP 2011 / Report of Contributions PLASMON: Data Assimilation of t … Presenter: COLLIER, Andrew (Hermanus Magnetic Observatory) Session Classification: Poster2 Track Classification: Track D2 - Space Science October 2,
Recommended publications
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • Ssc09-Xii-03
    SSC09-XII-03 The Promise of Innovation from University Space Systems: Are We Meeting It? Michael Swartwout St. Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT A popular notion among universities is that we are innovation-drivers in the staid, risk-adverse spacecraft industry – we are to professional small satellites what small satellites are to the “battlestars”. By contrast, professional industry takes a much different perspective on university-class spacecraft; these programs are good for attracting students to space and providing valuable pre-career training, but the actual flight missions are ancillary, even unimportant. Which opinion is correct? Both are correct. The vast majority of the 111 student-built spacecraft that have flown have made no innovative contributions. That is not to say that they have been without contribution. In addition to the inarguable benefits to education, many have served as radio Amateur communications, science experiments and even technological demonstrations. But “innovative”? Not so much. However, there have been two innovative contributors, whose contributions are large enough to settle the question: the University of Surrey begat SSTL, which helped create the COTS-based small satellite industry. Stanford and Cal Poly begat CubeSats, whose contributions are still being created today. This paper provides an update to our earlier submissions on the history of student-built spacecraft. Major trends identified in previous years will be re-examined with new data -- especially the bifurcation between larger-scale, larger-scope "flagship" programs and small-scale, reduced-mission "independents". In particular, we will demonstrate that the general history of student-built spacecraft has not been one of innovation, nor of development of new space systems -- with those few, extremely noteworthy, exceptions.
    [Show full text]
  • The Emerging Role of Cubesats for Earth Observation Applications in South Africa
    Delivered by Ingenta IP: 192.168.39.151 On: Sun, 26 Sep 2021 21:03:28 Copyright: American Society for Photogrammetry and Remote Sensing The Emerging Role of Cubesats for Earth Observation Applications in South Africa Paidamwoyo Mhangara, The University of Witwatersrand PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2020 333 June 2020 Layout.indd 333 5/18/2020 12:48:19 PM Introduction Cubesat technology has been augmented by a simultaneous acceleration in technological advancements in nano-, micro-, Cubesats usage is evolving from scientific demonstration and and miniature technologies in technical fields that include educational platforms to standardized space-borne scientif- telecommunications, (Opto)electronics, materials, sensors, ic instruments that support operational earth observation fluidics, and instrumentation (Woellert et al. 2011, Diaz et applications (Liebig 2000, Sandau 2010, Woellert et al. al. 2016). This technological wave enabled the development 2011, Qiao et al. 2013, Diaz et al. 2016, Kopacz et al. 2020). of a variety of miniaturized and novel autonomous instru- The effectiveness of Cubesat technology is being attested to ments and systems to facilitate remote measurements and globally as nanosatellites are increasingly used to support in- scientific experiments on a miniaturized platform. novative scientific and operational missions (Rose et al. 2012, Qiao et al. 2013, Xia et al. 2017, Poursanidis et al. 2019). Cubesats have been adopted by space agencies internationally Cubesats have long been recognized as having the potential for scientific tests and important scientific missions. Some to be a disruptive force that could replace large conventional prominent Cubesat programs include The National Aeronau- earth observation satellites (Southwood 2000, Diaz et al.
    [Show full text]
  • Space Security 2010
    SPACE SECURITY 2010 spacesecurity.org SPACE 2010SECURITY SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security 2010 ISBN : 978-1-895722-78-9 © 2010 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Artist rendition of the February 2009 satellite collision between Cosmos 2251 and Iridium 33. Artwork courtesy of Phil Smith. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2010 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] iv Governance Group Cesar Jaramillo Managing Editor, Project Ploughshares Phillip Baines Department of Foreign Affairs and International Trade, Canada Dr. Ram Jakhu Institute of Air and Space Law, McGill University John Siebert Project Ploughshares Dr. Jennifer Simons The Simons Foundation Dr. Ray Williamson Secure World Foundation Advisory Board Hon. Philip E. Coyle III Center for Defense Information Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University (Prof. emeritus) Dr. Lucy Stojak HEC Montréal/International Space University v Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 11 Acknowledgements PAGE 13 Executive Summary PAGE 29 Chapter 1 – The Space Environment:
    [Show full text]
  • Satellites Added and Deleted for July 1, 2010 Release This Version of the Database Includes Satellites Launched Through July 1, 2010
    Satellites Added and Deleted for July 1, 2010 release This version of the database includes satellites launched through July 1, 2010. The changes to this version of the database include: • The addition of 18 satellites • The deletion of 4 satellites • The addition of and corrections to some satellite data Satellites Added Cryosat-2 – 2010-013A Kobalt-M [Cosmos 2462] – 2010-014A X-37B OTV-1 [USA 212) – 2010-015A SES 1 – 2010-016A Parus-99 [Cosmos 2463] – 2010-017A Astra 3B – 2010-021A ComsatBw-2 – 2010-021B Navstar GPS 62 [USA 213] – 2010-022A SERVIS 2 – 2010-023A Compass G-3 – 2010-024A Arabsat 5B – 2010-025A Shijian-12 – 2010-027A Picard – 2010-028A PRISMA – 2010-028B TanDEM-X – 2010-030A Ofeq 9 – 2010-031A COMS-1 – 2010-032A Arabsat 5A – 2010-032B Satellites Removed LES-9 – 1976-023B Galaxy-9 -- 1996-033A SERVIS-1 – 2003-050A Galaxy-15 – 2005-041A Satellites Added and Deleted for April 1, 2010 release This version of the database includes satellites launched through April 1, 2010. The changes to this version of the database include: • The addition of 12 satellites • The deletion of 10 satellites • The addition of and corrections to some satellite data Satellites Added Beidou 3 – 2010-001A Raduga 1M – 2010-002A SDO (Solar Dynamics Observatory) – 2010-005A Intelsat 16 – 2010-006A Glonass 731 [Cosmos 2459] – 2010-007A Glonass 735 [Cosmos 2461] – 2010-007B Glonass 732 [Cosmos 2460] – 2010-007C GOES-15 [GOES-P] – 2010-008A Yaogan 9A – 2010-009A Yaogan 9B – 2010-009B Yaogan 9C – 2010-009C Echostar 14 – 2010-010A Satellites Removed Thaicom-1A – 1993-078B Intelsat-4 – 1995-040A Eutelsat W2 – 1998-056A Raduga 1-5 [Cosmos 2372] – 2000-049A IceSat – 2003-002A Raduga 1-7 [Cosmos 2406] – 2004-010A Glonass 713 [Cosmos 2418) – 2005-050B Yaogan-1 – 2006-015A CAPE-1 – 2007-012P Beidou-2 [Compass G2] – 2009-018A Satellites Added and Deleted for January 1, 2010 release This version of the database includes satellites launched through January 1, 2010.
    [Show full text]
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • 2007 Commercial Space Transportation Forecasts
    Federal Aviation Administration 2007 Commercial Space Transportation Forecasts May 2007 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-013107.INDD 2007 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation and the Commercial Space Transportation Advisory Committee The Federal Aviation Administration’s industry. Established in 1985, COMSTAC is Office of Commercial Space Transportation made up of senior executives from the U.S. (FAA/AST) licenses and regulates U.S. com- commercial space transportation and satellite mercial space launch and reentry activity as industries, space-related state government authorized by Executive Order 12465 officials, and other space professionals. (Commercial Expendable Launch Vehicle Activities) and 49 United States Code Subtitle The primary goals of COMSTAC are to: IX, Chapter 701 (formerly the Commercial Space Launch Act). AST’s mission is to Evaluate economic, technological and license and regulate commercial launch and institutional issues relating to the U.S. reentry operations to protect public health and commercial space transportation safety, the safety of property, and the national industry; security and foreign policy interests of the United States. Chapter 701 and the 2004 U.S. Provide a forum for the discussion of Space Transportation Policy also direct the issues involving the relationship between Federal Aviation Administration to encourage, industry and government requirements; facilitate, and promote commercial launches and and reentries. Make recommendations to the The Commercial Space Transportation Administrator on issues and approaches Advisory Committee (COMSTAC) provides for Federal policies and programs regard- information, advice, and recommendations ing the industry. to the Administrator of the Federal Aviation Administration within the Department of Additional information concerning AST and Transportation (DOT) on matters relating to COMSTAC can be found on AST’s web site, the U.S.
    [Show full text]
  • 58 International Astronautical Congress 2007
    International Astronautical Federation 5588tthh IInntteerrnnaattiioonnaall AAssttrroonnaauuttiiccaall CCoonnggrreessss 22000077 September 24-28, 2007 Hyderabad, India Volume 1 of 14 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com ISBN: 978-1-60560-150-2 Some format issues inherent in the e-media version may also appear in this print version. International Astronautical Federation 58th International Astronautical Congress 2007 TABLE OF CONTENTS Volume 1 IAC-07-A1.1.01 - Intercultural Interactions Among Long-Duration Spaceflight Crew ................. 1 Pratibha Kumar IAC-07-A1.1.02 - Cultural Determinants of co-Working of Ground Personnel in the European Space Agency.................................................................................................................. 15 Gro M. Sandal IAC-07-A1.1.03 - Always Second? The Astronaut Wife’s View .................................................... 23 Phyllis J. Johnson IAC-07-A1.1.04 - The Strategy of Control by Crewmembers’ Errors in Space Flight................. 38 Albert Nechaev IAC-07-A1.1.05 - Crew Performance Monitoring: Putting some Feeling Into It .......................... 39 Nathalie Pattyn IAC-07-A1.1.06 - Important Incidents Affecting Crewmembers During International Space Station Missions................................................................................................................................46 Nick Kanas IAC-07-A1.1.07 - Coping with the Problems of Space Flight: Reports
    [Show full text]
  • Small-Satellite Mission Failure Rates
    NASA/TM—2018– 220034 Small-Satellite Mission Failure Rates Stephen A. Jacklin NASA Ames Research Center, Moffett Field, CA March 2019 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or helping NASA maintain this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Reports Server, thus providing one of the largest TECHNICAL TRANSLATION. collections of aeronautical and space science STI English-language translations of foreign in the world. Results are published in both non- scientific and technical material pertinent to NASA channels and by NASA in the NASA STI NASA’s mission. Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing TECHNICAL PUBLICATION. Reports of specialized research announcements and completed research or a major significant feeds, providing information desk and personal phase of research that present the results of search support, and enabling data exchange NASA Programs and include extensive data services.
    [Show full text]
  • Updated Version
    Updated version HIGHLIGHTS IN SPACE TECHNOLOGY AND APPLICATIONS 2011 A REPORT COMPILED BY THE INTERNATIONAL ASTRONAUTICAL FEDERATION (IAF) IN COOPERATION WITH THE SCIENTIFIC AND TECHNICAL SUBCOMMITTEE OF THE COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE, UNITED NATIONS. 28 March 2012 Highlights in Space 2011 Table of Contents INTRODUCTION 5 I. OVERVIEW 5 II. SPACE TRANSPORTATION 10 A. CURRENT LAUNCH ACTIVITIES 10 B. DEVELOPMENT ACTIVITIES 14 C. LAUNCH FAILURES AND INVESTIGATIONS 26 III. ROBOTIC EARTH ORBITAL ACTIVITIES 29 A. REMOTE SENSING 29 B. GLOBAL NAVIGATION SYSTEMS 33 C. NANOSATELLITES 35 D. SPACE DEBRIS 36 IV. HUMAN SPACEFLIGHT 38 A. INTERNATIONAL SPACE STATION DEPLOYMENT AND OPERATIONS 38 2011 INTERNATIONAL SPACE STATION OPERATIONS IN DETAIL 38 B. OTHER FLIGHT OPERATIONS 46 C. MEDICAL ISSUES 47 D. SPACE TOURISM 48 V. SPACE STUDIES AND EXPLORATION 50 A. ASTRONOMY AND ASTROPHYSICS 50 B. PLASMA AND ATMOSPHERIC PHYSICS 56 C. SPACE EXPLORATION 57 D. SPACE OPERATIONS 60 VI. TECHNOLOGY - IMPLEMENTATION AND ADVANCES 65 A. PROPULSION 65 B. POWER 66 C. DESIGN, TECHNOLOGY AND DEVELOPMENT 67 D. MATERIALS AND STRUCTURES 69 E. INFORMATION TECHNOLOGY AND DATASETS 69 F. AUTOMATION AND ROBOTICS 72 G. SPACE RESEARCH FACILITIES AND GROUND STATIONS 72 H. SPACE ENVIRONMENTAL EFFECTS & MEDICAL ADVANCES 74 VII. SPACE AND SOCIETY 75 A. EDUCATION 75 B. PUBLIC AWARENESS 79 C. CULTURAL ASPECTS 82 Page 3 Highlights in Space 2011 VIII. GLOBAL SPACE DEVELOPMENTS 83 A. GOVERNMENT PROGRAMMES 83 B. COMMERCIAL ENTERPRISES 84 IX. INTERNATIONAL COOPERATION 92 A. GLOBAL DEVELOPMENTS AND ORGANISATIONS 92 B. EUROPE 94 C. AFRICA 101 D. ASIA 105 E. THE AMERICAS 110 F.
    [Show full text]
  • Changes to the June 19, 2006 Release of the UCS Satellite Database This Version of the Database Includes Launches Through June 15, 2006
    For the 7-1-16 release: This version of the Database includes launches through June 30, 2016. There are currently 1419 active satellites in the database. The changes to this version of the database include: The addition of 75 satellites The deletion of 37 satellites The addition of and corrections to some satellite data. Satellites removed Akebono – 1989-016A Navstar GPS II-10 (USA 66) – 1990-103A Navstar GPS II-23 (USA 96) – 1993-068A Superbird-C – 1997-036A Intelsat-7 – 1998-052A Dove 1d-2 – 1998-067FV Dove 1e-1 – 1998-067GF Dove 1e-2 – 1998-067GE Dove 1e-3 – 1998-067GH Dove 1e-4 – 1998-067GG Dove 1e-5 – 1998-067GL Dove 1e-8 – 1998-067GK Dove 1e-9 – 1998-067GN SERPENS – 1998-067GX AAUSat-5 – 1998-067GZ Dove 2b-8 – 1998-067HJ Eutelsat 115 West A – 1998-070A Ørsted – 1999-008B Keyhole 3 (USA 144) – 1999-028A Galaxy-27 – 1999-052A XM-1 – 2001-018A Keyhole 4 (USA 161) -- 2001-044A Yaogan-2 – 2007-019A Yaogan-3 – 2007-055A Can-X2 – 2008-021H STUDSat – 2010-035B Tian-Xun-1 – 2011-066A Yubileiny-2/RS-40 – 2012-041C Can-X3a -- 2013-009G ORSES – 2013-064G $50Sat – 2013-066W DMSP-19 – 2014-015A Can-X4 -- 2014-034C Can-X5 -- 2014-034D Angels (USA 255) – 2014-043C USS Langley – 2015-025B BRICSat-P – 2015-025E Satellites Added Belintersat-1 – 2016-001A Jason-3 – 2016-002A IRNSS-1E – 2016-003A Intelsat-29E – 2016-004A Eutelsat-9B – 2016-005A Beidou 3M-3S – 2016-006A Navstar GPS IIF-12 (USA 266) – 2016-007A Glonass 751 (Cosmos 2514) – 2016-008A Topaz-4 (USA 267) – 2016-010A Sentinel-3A – 2016-011A ChubuSat-2 – 2016-012B ChubuSat-3 – 2016-012C Horyu-4
    [Show full text]
  • Conference Programme SOUTH AFRICAN NATIONAL SPACE AGENCY Celebrating a Decade of Innovative Space Products and Services for the Good of Humanity
    conference programme SOUTH AFRICAN NATIONAL SPACE AGENCY Celebrating a decade of innovative space products and services for the good of humanity 21416 - SANSA A4 Advertisement (March 21) V3.indd 1 2021/02/26 13:03 contents Message from the SpaceOps 2021 Chairman 4 SpaceOps 2021 Organisations 6 Sponsors 8 Conference Overview 9 Conference at a glance 11 Technical Programme 12 Student and Young Professionals Program (SYP) 17 Special Sessions Plenary 1: Space Operations during COVID-19 pandemic 20 Plenary 2: Commercial Ground stations: New Space and Traditional Space 24 Plenary 3: Human Spaceflight Operations: Space Stations the Moon and MARS 28 Plenary 4: Space situational awareness: Protecting our assets in Space 31 Closing Ceremony 36 Awards and Recognition 37 Paper Submissions 40 Message from the SpaceOps 2021 Chairman Dear Friends and Colleagues, Thank you for participating in the first ever Virtual Conference on Space Operations -SpaceOps 2021 - Virtual Edition. The South African National Space Agency is honored to have been given this opportunity to bring the Space Operations community together in this momentous, groundbreaking event. With this being our first online Space Operations Conference, we trust and hope that at the end of the Conference we would have delivered a successful and engaging Conference. SpaceOps has held fifteen biennial conferences hosted by various countries around the world over the years, and this time around the 16th biennial installment of the conference is being hosted for the first time virtually. Thank you to all our delegates, speakers, SpaceOps.org members, authors, sponsors, and partner organisations, for making this conference possible. It was our wish to meet you face-to-face, however, things dramatically changed across the world.
    [Show full text]