The Emerging Role of Cubesats for Earth Observation Applications in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Emerging Role of Cubesats for Earth Observation Applications in South Africa Delivered by Ingenta IP: 192.168.39.151 On: Sun, 26 Sep 2021 21:03:28 Copyright: American Society for Photogrammetry and Remote Sensing The Emerging Role of Cubesats for Earth Observation Applications in South Africa Paidamwoyo Mhangara, The University of Witwatersrand PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2020 333 June 2020 Layout.indd 333 5/18/2020 12:48:19 PM Introduction Cubesat technology has been augmented by a simultaneous acceleration in technological advancements in nano-, micro-, Cubesats usage is evolving from scientific demonstration and and miniature technologies in technical fields that include educational platforms to standardized space-borne scientif- telecommunications, (Opto)electronics, materials, sensors, ic instruments that support operational earth observation fluidics, and instrumentation (Woellert et al. 2011, Diaz et applications (Liebig 2000, Sandau 2010, Woellert et al. al. 2016). This technological wave enabled the development 2011, Qiao et al. 2013, Diaz et al. 2016, Kopacz et al. 2020). of a variety of miniaturized and novel autonomous instru- The effectiveness of Cubesat technology is being attested to ments and systems to facilitate remote measurements and globally as nanosatellites are increasingly used to support in- scientific experiments on a miniaturized platform. novative scientific and operational missions (Rose et al. 2012, Qiao et al. 2013, Xia et al. 2017, Poursanidis et al. 2019). Cubesats have been adopted by space agencies internationally Cubesats have long been recognized as having the potential for scientific tests and important scientific missions. Some to be a disruptive force that could replace large conventional prominent Cubesat programs include The National Aeronau- earth observation satellites (Southwood 2000, Diaz et al. tics and Space Administration’s (NASA) CubeSat Launch 2016, Mhangara et al. 2020). Initiative program, European Space Agency (ESA)-funded Student Space Exploration and Technology Initiative (SSETI), Cubesats have benefited from the accelerated progression to- the National Science Foundation (NSF) initiative in the USA, wards miniaturization of space-borne satellite platforms and and the Cubesat Programme at the Cape Peninsula Universi- the availability of Commercial-Off-The-Shelf (COTS) compo- ty of Technology’s French South African Institute of Technol- nents (Woellert et al. 2011, Matandirotya et al. 2013). Small ogy (F’SATI) whose Cubesats have been funded by the South satellites are generally classified into five groups known as African National Space Agency (SANSA) (Blouvac et al. 2000, Minisatellite (100–500 kg), Microsatellite (10–100 kg), Nano- Southwood 2000, Steyn et al. 2013, van satellite (1–10 kg), Picosatellite (0.1–1 Zyl et al. 2013). kg) and Femtosatellite (0.01–0.1 kg) (Sandau 2010, Woellert et al. 2011). Despite their small size, The commercial viability of using Despite their small size, Cubesats are Cubesats are increasingly Cubesats for operational earth obser- increasingly being considered as ideal vation applications has also gained platforms for hosting compact earth being considered as the attention of private companies observation instruments needed to Delivered by Ingenta (Mhangara et al. 2020). The low take critical measurements. Conven-IP: 192.168.39.151ideal platforms On: Sun, for26 Sep 2021 21:03:28 Copyright: American Society for Photogrammetry and Remotecapital Sensing layout cost, rapid development tional earth observation scientific hosting compact earth and related low-risk levels associated instruments mounted on Cubesats observation instruments with Cubesat platforms are attractive include visible and near-infrared for investors venturing into the space sensors, near-infrared spectrometers, needed to take critical industry. Many academic spin-off magnetometers, radiometers and companies are being established in- short wavelength radars (Liebig 2000, measurements. ternationally to develop and integrate Qiao et al. 2013, Diaz et al. 2016). Cubesat components and subsystems To date, at least 1200 Cubesats have as well as to provide earth observa- been launched into low-earth orbit, and this number is pre- tion data and downstream products and services (Rose et dicted to grow (Sandau 2010, Xia et al. 2017). al. 2012, Xia et al. 2017). A business value chain now exists that is comprised of manufacturers of COTS components, suppliers of Cubesat kits, providers of complete Cubesats, Cubesats Around the World companies for launch services, data vendors and providers Globally, the development of miniaturized satellite plat- for downstream value-added products and services. In a forms has been pioneered by universities (Sandau 2010, Xia recent market study of the satellite industry, the economic et al. 2017). Initially introduced as low-cost space research value of Cubesats was $152 million in 2018, and projected and engineering projects for university students, Cubesat to rise to $375 million by 2023. The earth observation and technology has proliferated in the industry and has been traffic monitoring segment constitute a large share of the widely adopted by space agencies internationally (Blouvac global Cubesat market (https://www.marketsandmarkets. et al. 2000, Liebig 2000, Southwood 2000). The growth in com/Market-Reports/cubesat-market-58068326.html). Promi- nent earth observation companies that have emerged include Photogrammetric Engineering & Remote Sensing Planet Labs, which has a constellation of more than 100 Cubesats in low earth orbit imaging over 250 million km2 of Vol. 86, No. 6, June 2020, pp. 333–340. the earth’s landmass daily. The Planet Labs Cubesat weighs 0099-1112/20/334–340 about 5kg and is 10x10x30 centimeters in size. © 2020 American Society for Photogrammetry and Remote Sensing Cubesats are a feasible way of participating in space-related doi: 10.14358/PERS.86.6.333 activities due to their cheap manufacturing costs, low launch 334 June 2020 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING June 2020 Layout.indd 334 5/18/2020 12:48:19 PM cost, short development time, small size, light weight, and (Gottschalk 2010, Ngcofe and Gottschalk 2013, Steyn et al. low power requirements compared to large satellites used 2013, van Zyl et al. 2013). South Africa has a long histo- in the Landsat satellite missions and Sentinel satellite se- ry in space science and technology that dates back to the ries (Paules and Luther 2000, Woellert et al. 2011, Diaz et emergence of the space era. The country’s heritage in space al. 2016). These favorable factors are allowing developing technology can be traced as far back as the 1950’s when it countries to actively participate in satellite development was involved in amateur rocket launches. and operations. The potential of Cubesats to accelerate scientific and technological advancement of emerging econ- In a review of South Africa’s space program, Gottschalk omies and developing countries has already been articu- (Gottschalk 2010) divides the evolution of the country’s space lated (Woellert et al. 2011, Rose et al. 2012). The scholars initiative into three epochs. The first phase was from 1947- provide a concise synthesis of the history and a technical 1962 and was named the age of amateurs. The apartheid overview of Cubesats as well as a synopsis of scientific government led the second phase called the military era from applications and success stories. 1963-1993. This era involved the development of a secret mil- itary space launcher program targeted at developing recon- For several decades now, the development of satellites naissance satellites. While the period didn’t produce a flight- for earth observation applications has been dominated by ready satellite, South Africa developed a comprehensive space space-faring nations such as United States, Japan, India, infrastructure that included satellite testing, site design and Russia, European Union countries, Japan, Canada and a coastal launch facility with telemetry capacity. lately China and Brazil (Woellert et al. 2011). Despite the well-established scientific and socio-economic bene- The third phase, named the civilian era, emerged after the fits of earth observation, the capital-intensive nature and country became democratic in 1994. During this period, the engineering complexity of conventional satellite building country established several legal instruments and policies to programs limited developing countries regulate space activities and developed in constructing their own satellites. institutions and structures to coor- The advent of Cubesats have lowered The advent of Cubesats dinate them. Some of the space laws the barrier to entry for less developed implemented include the Space Affairs countries and has provided them have lowered the barrier Act 84 of 1993, Space Affairs Amend- with an invaluable opportunity to to entry for less developed ment Act 64 of 1995 and the South Delivered by Ingenta African National Space Agency Act 36 launch space programs. (van Zyl. IP: 192.168.39.151 On: Sun, 26 Sep 2021 21:03:28 2011, Rose et al. 2012, NgcofeCopyright: and Americancountries Society forand Photogrammetry has provided and Remote of 2008. Sensing Prominent institutions and Gottschalk 2013) The development them with an invaluable councils set up include the South Af- of Cubesats accompanies some of the rica National Space Agency (SANSA) achievements by African countries opportunity to launch and the Space Affairs Council of South with emerging space capabilities Africa (SACSA) (Gottschalk 2010, in small satellites
Recommended publications
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • 2015 October
    TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1.
    [Show full text]
  • Ssc09-Xii-03
    SSC09-XII-03 The Promise of Innovation from University Space Systems: Are We Meeting It? Michael Swartwout St. Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT A popular notion among universities is that we are innovation-drivers in the staid, risk-adverse spacecraft industry – we are to professional small satellites what small satellites are to the “battlestars”. By contrast, professional industry takes a much different perspective on university-class spacecraft; these programs are good for attracting students to space and providing valuable pre-career training, but the actual flight missions are ancillary, even unimportant. Which opinion is correct? Both are correct. The vast majority of the 111 student-built spacecraft that have flown have made no innovative contributions. That is not to say that they have been without contribution. In addition to the inarguable benefits to education, many have served as radio Amateur communications, science experiments and even technological demonstrations. But “innovative”? Not so much. However, there have been two innovative contributors, whose contributions are large enough to settle the question: the University of Surrey begat SSTL, which helped create the COTS-based small satellite industry. Stanford and Cal Poly begat CubeSats, whose contributions are still being created today. This paper provides an update to our earlier submissions on the history of student-built spacecraft. Major trends identified in previous years will be re-examined with new data -- especially the bifurcation between larger-scale, larger-scope "flagship" programs and small-scale, reduced-mission "independents". In particular, we will demonstrate that the general history of student-built spacecraft has not been one of innovation, nor of development of new space systems -- with those few, extremely noteworthy, exceptions.
    [Show full text]
  • The SUNSAT Micro Satellite Program
    The SUNSAT Micro Satellite Program: Technical performance and limits of imaging micro satellites Sias Mostert, Thys Cronje and Francois du Plessis Department of Electrical and Electronic Engineering Stellenbosch University. Private Bag X1, MATIELAND, 7602. South Africa. Fax: +27 21 808 4981. Internet: [email protected]. http:\\sunsat.ee.sun.ac.za ABSTRACT - This paper examines the technical performance of the SUNSAT micro satellite bus, which is supporting the high resolution imager (HRI) payload on the micro satellite which is scheduled for launch in December 1998. A number of existing remote sensing satellites are investigated to determine some key parameters by which a micro satellite remote sensing mission should be evaluated. The SUNSAT 1 HRI instrument is then evaluated in this context and future possible missions suggested which is suitable for micro satellite missions. 1. INTRODUCTION SUNSAT, a professional micro satellite developed by a team of graduate students and engineers at Stellenbosch University in South Africa, is scheduled for launch from Vandenberg Airforce Base on a Delta II rocket, currently manifested for December 1998. The Flight Model hardware is complete and the pre-flight testing is drawing to a close. This paper examines the technical performance and capabilities of SUNSAT 1 micro satellite supporting the high resolution imager (HRI). Laboratory measured performance data are provided for the 15 m resolution 3 color CCD imager of SUNSAT, developed jointly by Stellenbosch University, the Council for Scientific Industrial Research (CSIR) in South Africa and the Korean Advanced Institute of Science and Technology (KAIST). The performance of the Attitude Determination and Control System (ADCS), which is required to support the imager, is described.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Operational Aspects of Orbit Determination with GPS for Small Satellites with SAR Payloads Sergio De Florio, Tino Zehetbauer, Dr
    Deutsches Zentrum Microwave and Radar Institute für Luft und Raumfahrt e.V. Department Reconnaissance and Security Operational Aspects of Orbit Determination with GPS for Small Satellites with SAR Payloads Sergio De Florio, Tino Zehetbauer, Dr. Thomas Neff Phone: +498153282357, [email protected] Abstract Requirements Scientific small satellite missions for remote sensing with Synthetic Taylor expansion of the phase Φ of the radar signal as a Aperture Radar (SAR) payloads or high accuracy optical sensors, pose very function of time varying position, velocity and acceleration: strict requirements on the accuracy of the reconstructed satellite positions, velocities and accelerations. Today usual GPS receivers can fulfill the 4π 233 Φ==++++()t Rtap ()()01kk apttaptt ()(-) 02030 ()(-) k aptt ()(-) k ο () t accuracy requirements of this missions in most cases, but for low-cost- λ missions the decision for a appropriate satellite hardware has to take into Typical requirements, for 0.5 to 1.0 m image resolution, on account not only the reachable quality of data but also the costs. An spacecraft position vector x: analysis is carried out in order to assess which on board and ground equipment, which type of GPS data and processing methods are most −−242 appropriate to minimize mission costs and full satisfying mission payload x≤≤⋅≤⋅ 15 mmsms x 1.5 10 / x 6.0 10 / (3σ ) requirements focusing the attention on a SAR payload. These are requirements on the measurements, not on the real motion of the satellite Required Hardware Typical Position
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters 4th Quarter 1997 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 4TH QUARTER 1997 REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters 1st Quarter 1998 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 1ST QUARTER 1998 REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S.
    [Show full text]
  • Aspects of SUNSAT Main Structure Design and Manufa
    Aspects of Sunser main structure design and manufacturing fI.R. Schusterl and A.H. Basson2 (Received: January 1995; Final version May 1995) Abstract SUNSAT micro satellite project in 1989. Studies of the Department's capabilities and other programs at the uni- This paper describes sorne ouerall mechanical design 0,s- versities of Surrey and Berlin led to the January 1992 base- pects of the Stellenbosch Uniaersity satellite,'SUNSAT'. An line design compatible with Anlarup launch requirements. introduction to lhe SUNSAT project is giuen. The mechan- In 1994, NASA expressed interest in launching Sut{sar in ical design requirements are described. The design of the the same mission a^s the Danish Oersted magnetic research module trays, which conslitutes a major part of the main satellite,[2] both as secondary payloads on the Argos/Pgl- stracture, is discussed. The design and rnanufacturing of 1 Delta ll mission in October 1996. In exchange, SUNSAT the horizon sensor housing and the imager bearing hous- will provide data gathered by a precision GPS receiver ings are described to illustrate the infl,uence of the design (that NASA will supply) and the mountitrg of a set of requirements, the use of solid modelling CAD software and laser retro-reflectors on SUNSAT. The proposed orbit is the application of design fo, assembly principles in the near-polar with an inclination of 96o and an altitude vary- satellite's mechanical design. The resulting design satis- ing from 450 to 850 km.[3] firt the functional and financial constrainls. Review of previous work Introduction Thorough surveys of other international activities involv- This paper describes the mechanical design and manufac- ittg small spacecraft have been given in previous papers.[4; ture of the trays that form the main structure of Sut{sAT, 5] Only a brief summary of relevant aspects will be given as well as the horizon sensor housings and the imager bear- here.
    [Show full text]
  • The Pcsat Mission and Cubesat Design Notes
    SSC01-VIIIb-1 The PCsat Mission and Cubesat Design Notes Bob Bruninga, WB4APR, ENS Boutros, ENS Nolan, ENS Schwenzer, ENS Lawrence, LTCL B. Smith, Dr. D. Boden US Naval Academy Satellite Lab 590 Holloway Rd, Annapolis, MD 21402 [email protected] 410-293-6417 FAX 410-239-2591 Abstract There are growing opportunities for Universities to gain educational access to Space. The Naval Academy has used the Department of Defense Space Test Program for its PCsat and Sapphire projects and the Stanford Cubesat program offers a unique opportunity to get numerous small student satellite payloads into space. As a spin-off of our PCsat project, we have investigated several off-the-shelf solutions to the Telemetry, Command and control portion of small satellites that can greatly simplify small satellite and CubeSat designs. This permits students to concentrate on the various payloads and other aspects of the project without starting from scratch with a comm. system. This simple comm. System based on AX.25 packet radio is being flown this summer in the Naval Academy’s Personal Communications Satellite (PCsat) which will demonstrate downlinks receivable on Hand Held Transceivers (HT’s) with only a whip antenna. Further these simple downlinks can be easily fed into the Internet for live worldwide distribution of data. These designs are all based on the amateur radio standard on-air AX.25 packet network protocol that is implemented in a number of off-the-shelf modems (called Terminal Node Controllers or TNC’s). The following paragraphs describe three such hardware devices and the remainder of this paper describes how TNC’s and the AX.25 protocol were used on PCsat.
    [Show full text]
  • Report of Contributions
    SAIP 2011 Report of Contributions https://events.saip.org.za/e/saip2011 SAIP 2011 / Report of Contributions Defects and Reconstructions in El … Contribution ID: 2 Type: Poster Presentation Defects and Reconstructions in Electron Beam Irradiated Graphene Sheets Wednesday, 13 July 2011 17:00 (2 hours) <p>Graphene characterization and device fabrication often require extensive use of the scanning electron microscopy (SEM) and tunneling electron microscopy (TEM). These techniques involve electron beam irradiation that usually causes defects in materials under investigation. The radia- tion induced defects may lead to significant damage to the material which may alter its properties, normally an undesirable phenomenon. However, recent experiments show that electron radiation can have beneficial effects in materials. Graphenic materials have the ability to reorganize their structures under irradiation like no other materials. This property can find application in radiation hard electronics owing to the technological importance of graphenic materials. Here we report the Raman and scanning tunneling microscopy (STM) results of pristine and heat treated electron -beam irradiated graphene sheets (mono-layer and double layers) to demonstrate graphenic recon- structions. STM creates images of the charge density of electrons at the Fermi level such that all surface atoms can be visible. Level (Hons, MSc, <br> &nbsp; PhD, other)? PhD Consider for a student <br> &nbsp; award (Yes / No)? Yes Would you like to <br> submit a short paper <br> for the Conference
    [Show full text]
  • Space Security 2010
    SPACE SECURITY 2010 spacesecurity.org SPACE 2010SECURITY SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security 2010 ISBN : 978-1-895722-78-9 © 2010 SPACESECURITY.ORG Edited by Cesar Jaramillo Design and layout: Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Artist rendition of the February 2009 satellite collision between Cosmos 2251 and Iridium 33. Artwork courtesy of Phil Smith. Printed in Canada Printer: Pandora Press, Kitchener, Ontario First published August 2010 Please direct inquires to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 708 Fax: 519-888-0018 Email: [email protected] iv Governance Group Cesar Jaramillo Managing Editor, Project Ploughshares Phillip Baines Department of Foreign Affairs and International Trade, Canada Dr. Ram Jakhu Institute of Air and Space Law, McGill University John Siebert Project Ploughshares Dr. Jennifer Simons The Simons Foundation Dr. Ray Williamson Secure World Foundation Advisory Board Hon. Philip E. Coyle III Center for Defense Information Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research Dr. John Logsdon The George Washington University (Prof. emeritus) Dr. Lucy Stojak HEC Montréal/International Space University v Table of Contents TABLE OF CONTENTS PAGE 1 Acronyms PAGE 7 Introduction PAGE 11 Acknowledgements PAGE 13 Executive Summary PAGE 29 Chapter 1 – The Space Environment:
    [Show full text]