Amateur Satellite Beginners Session

Total Page:16

File Type:pdf, Size:1020Kb

Amateur Satellite Beginners Session Amateur Satellite Beginners Session Presented by Dave Johnson, G4DPZ AMSAT-UK / AMSAT-NA In association with Carlos Eavis, G0AKI RSGB Welcome We are going to cover: z OSCAR? z History z A bit of orbit theory z Satellite operation z Satellite modes z Ground station equipment z What's up! Oscar... z An OSCAR is an Orbiting Satellite Carrying Amateur Radio z Built for non-commercial purposes z Originally built by Project OSCAR members in garages in Silicon Valley z Now built by and/or funded by members of AMSAT and AMSAT affiliates z Originally a “bleep sat” but now carry sophisticated repeaters or transponders z Are encouraged to carry sensors and other scientific experiments A bit of History z OSCAR-I , which had a battery powered 140mw transmitter operating in the 2 meter band. z Transmit it’s message of “HI” for three weeks and re- entered the atmosphere on January 31, 1962 after making 312 orbits. z The greeting “HI” is used in almost all beacons, including AO-40’s telemetry beacon, built and launched by the Amateur Satellite service. A bit of History z Sputnik 1 was the world's first Earth- orbiting artificial satellite. Launched by the Soviet Union on October 4, 1957. How is a Satellite Designed FM v Linear Transponder Some important terms Threats to Satellites Orbital Comparison Satellite Orbit Tracks Inclined Orbit Molnya Satellite Coverage High Earth Orbit (HEO)‏ Low Earth Orbit (LEO)‏ CubeSats z Based on a 10cm cube but some can be a bit bigger z Operate in Amateur Satellite allocation z AX-25 protocol & others Student Satellites z PCSAT 1 z US Naval Academy Aerospace student project z APRS protocol z note the antennas! Operation a Satellite Ground Station Equipment z Antennas (rotators)‏ z Preamps z Radios z Peripherals z Tracking Software / Computers Antennas z Handheld antennas: z Good for portable ops (and SOTA)‏ z Commercial Arrow Antennas Delfi-C3 transponder enabled Antennas z Handheld antennas: z DIY out available materials z You will need a Mux Antennas z Extreme portable!: z Howard Long, G6LVB z Used on AO-40 very successfully Antennas Fixed Station: z Wimo X antenas z Yaesu G5500 rotator z Homebrew dish with modified LNB Antennas Fixed Station for Cubesat C&C: z M2 antenas z M2 Rotator z Part of the GENSO network Handheld Transceiver z The minimum you need to operate. z TH-D7e z Dual Band z Duplex z APRS z CTCSS Base Station z FT-847 z Excellent sat capabilities but no longer in production Base Station z TS-2000 z Really good all round radio with satellite facilities z Does have a birdie on SO-50 downlink! Base Station z IC-910 z VHF/UHF/L-Band z Designed for Satellite op's z Old ones were deaf z Mine's fine! Ideal Groundstation for LEO What's Up! z We have three types of satellite: z Operational z Semi-Operational z Deceased R.I.P. (not rust in piece, in space)‏ Operational Satellites z DO-64 Delfi-C3 Launch Date: April 28, 2008 z Primary telemetry downlink: 145.870 MHz 1200 Baud BPSK AX.25 400mW z Backup telemetry downlink: 145.930 MHz 1200 Baud BPSK AX.25 400mW z Linear transponder passband downlink: 145.880 - 145.920 MHz (inverting)‏ z 400mW z Linear transponder passband uplink: 435.570 - 435.530 MHz z Transponder mode beacon: 145.870 MHz CW (10dB below transponder PEP)‏ z Delfi-C3 web page: http://www.delfic3.nl/ Operational Satellites z VO-52 HAMSAT Launch Date: May 05,2005 z Frequencies:Indian Transponder: z Uplink: 435.220 to 435.280 MHz LSB/CW z Downlink: 145.930 to 145.870 MHz USB/CW z Dutch Transponder: z Uplink: 435.225 to 435.275 MHz LSB/CW z Downlink: 145.925 to 145.875 MHz USB/CW z Mode and Antenna Polarization: z V: LHCP U: RHCP Operational Satellites z AO-51 ECHO Launch date: June 29, 2004 z Analog voice downlink: 435.300 MHz FM / 435.150 MHz FM / 2401.200 Mhz FM z Analog voice uplink: 145.880 MHZ FM / 145.880 MHz USB / 145.920 MHz FM z 1268.700 MHz FM 67Hz PL tone z Digital Downlinks: 435.150 MHz FM 38k4 PBP, 1 watt output z 435.150 MHz FM 9k6 Pacsat Broadcast Protocol z 2401.200 MHz FM 38k4 bps, AX.25 z Digital Uplink: 145.860 MHz FM 9k6 Pacsat Broadcast Protocol z 1268.700 mhz FM 9k6 PBP Digital z Beacon: 435.150 MHz Operational Satellites z SO-50 SAUDISAT-1C Launch date: December 20, 2002 z Uplink: 145.850 MHz FM - 67.0 Hz PL tone z Downlink: 436.795 MHz z To switch the transmitter on, you need to send a CTCSS tone of 74.4 Hz. z The order of operation is thus: (allow for Doppler as necessary): z 1) Transmit on 145.850 MHz with a tone of 74.4 Hz to arm the 10 minute timer z on board the spacecraft. z 2) Now transmit on 145.850 MHz (FM Voice) using 67.0 Hz to PT the z repeater on and off within the 10 Minute window. z 3) Sending the 74.4 tone again within the 10 minute window will reset z the 10 minute timer. Operational Satellites z In addition, we have several satellites that have schedules under which they are operational due to current solar illumination conditions: z FO-29 JAS-2 z AO-27 AMRAD z AO-16 PACSAT z AO-7 AMSAT OSCAR 7 Details can be found on the www.amsat.org site. R.I.P. CP4 KO-25 KITSAT HO-59 HITSat KO-23 KITSAT NCUBE-2 UO-22 UOSAT XO-53 SSETI AO-21 AMSAT-OSCAR 21 UWE-1 FO-20 JAS-1b AO-49 AATiS OSCAR-49 (SAFIR-M)‏ LIBERTAD-1 MO-46 TIUNGSAT-1 LO-19 LUSAT NO-45 SAPPHIRE WO-18 WEBERSAT SO-42 SAUDISAT-1B DO-17 Dove SO-41 SAUDISAT-1A UO-14 UoSAT-3 AO-40 AMSAT OSCAR 40 FO-12 Fuji-OSCAR 12 OO-38 OPAL AO-10 OSCAR 10 UO-36 UoSAT-12 AO-8 AMSAT-OSCAR 8 SO-35 SUNSAT AO-6 AMSAT-OSCAR 6 PO-34 PANSAT AO-5 Australis-OSCAR 5 SO-33 SEDSAT-1 OSCAR III TO-31 TMSAT-1 RS-15 RADIO SPORT RS-15 PO-28 POSAT-1 RS-13 RADIO SPORT RS-13 IO-26 ITAMSAT RS-12 RADIO SPORT RS-12 Other Resources z You can find more details about Amateur Satellite Operations on the www here: z www.amsat.org z www.amsat.de z www.amsat-dl.org Not so subtle Advert z Membership of AMSAT-UK costs £15/year z ALL money goes to funding Satellite related projects, fund now stands at £73K plus a £40K legacy z All committee give their time for free z Many current projects!!!! What we covered, phew! z Orbiting Satellite Carrying Amateur Radio z History z A bit of orbit theory z Satellite operation z Satellite modes z Ground station equipment z What's up! Thank You We'll be in GB4FUN for the next few hours to answer any more questions. Or outside waving antennas at satellites! --... ...--.
Recommended publications
  • Amateur-Satellite Service
    Amateur-Satellite Service 1 26/11/2012 Some facts about the amateur-satellite service • Began in 1961 • Pioneered low-cost satellite technology • First privately funded space satellites • First satellite search & rescue (OSCAR 6 & 7) • First inter-satellite transmissions • Early tele-medicine transmissions • Pioneered distributed engineering 2 26/11/2012 Amateur-satellite organizations (by country) • Argentina AMSAT-LU • Australia AMSAT-Australia • Austria AMSAT-OE • Bermuda AMSAT-BDA • Brazil BRAMSAT • Chile AMSAT-CE • Denmark AMSAT-OZ • Germany AMSAT-DL • Finland AMSAT-OH • France AMSAT-France • Israel AMSAT-Israel • Italy AMSAT-Italia 3 26/11/2012 Amateur-satellite organizations (by country)…continued • Korea KITSAT Project • Mexico AMSAT-Mexico • New Zealand AMSAT-ZL • Qatar AMSAT-Qatar • Japan JAMSAT • North America AMSAT-NA • Russia AMSAT-R • South Africa AMSAT-SA • Spain AMSAT-URE • Sweden AMSAT-Sweden • United Kingdom AMSAT-UK • USA, Canada AMSAT-NA 4 26/11/2012 Co-operation with universities to develop & construct amateur-satellites Amateur satellites have been designed and constructed by university students with the help of local amateurs and amateur-satellite organizations. Some examples: ◊ Stellenbosch University (South Africa) ◊ University of Surrey (UK) ◊ University of Mexico ◊ Weber State University (USA) 5 26/11/2012 Student satellite project 6 26/11/2012 Orbiting Satellite Carrying Amateur Radio (OSCARs) Early satellite projects • April 1959 Concept of a satellite built by and for amateurs • OSCAR I Dec 1961 - Jan 1962,
    [Show full text]
  • Peter Gülzow, DB2OS 2020-06-05 © AMSAT-DL OSCAR-10 (P3-B) OSCAR-13 (P3-C) OSCAR-40 (P3-D)
    Peter Gülzow, DB2OS 2020-06-05 © AMSAT-DL OSCAR-10 (P3-B) OSCAR-13 (P3-C) OSCAR-40 (P3-D) OSCAR-100 (P4-A) AMSAT Phase 4 = GEO The meaning of Es'hail “The story behind the name Es’hail (Canopus) is the name of a star which becomes visible in the night sky of the Middle East as summer turns to autumn. Traditionally, the sighting of Es’hail brings happiness as it means that winter is coming and that good weather will soon be with us. We hope that the arrival of Es’hailSat will equally be beneficial for the satellite community.” (from Es’hailSat: Follow the star) Canopus /kəˈnoʊpəs is the brightest star in the southern constellation of Carina, and is located near the western edge of the constellation around 310 light-years from the Sun. Its proper name is generally considered to originate from the mythological Canopus, who was a navigator for Menelaus, king of Sparta. H E Abdullah bin Hamad Al Attiyah, A71AU, Chairman of the Administrative Control and Time line Transparency Authority, who is also the Chairman of the Qatar Amateur Radio 1001+ arabian nights… Society (QARS) during the Qatar international amateur radio festival in December 2012. 2012 AMSAT-DL meets QARS | (DB2OS @ International Amateur Radio Festival in Qatar) | 2013 Es’hailSat - | Qatar Satellite Company | (idea, concept, design requirements, RFI, meetings with potential | suppliers, RFP, finalisiation of requirements) | 2016 Kick-Off at MELCO Japan | (Technical presentations, Requirements review, Critical Design Review, | Design Validation) | 2018 November 15th launch with SpaceX Falcon 9 2012 Qatar Ham Radio Festival Executives from Qatar’s Es’hailSat and Japan’s Mitsubishi Electric Space Systems (MELCO) in Kamakura, outside of Tokyo, Japan, to observe the vacuum chamber test of Es'hail-2.
    [Show full text]
  • Naval Postgraduate School Petite Amateur Navy Satellite
    f NAVAL POSTGRADUATE SCHOOL PETITE AMATEUR NAVY SATELLITE (PANSAT) NASA/USRA University Advanced Design Program i Final Design Report i L Summer 1989 Naval Postgraduate School Space Systems Academic Group Monterey, California (NA_A-CR-18_049) PETIT? AMATEUR NAVY N90-I1800 _TFLLIT_: (pANSAT) Find1 _eport (N_v;_i Postgrdduate School) ;1 o CSCL 22B ,i TABLE OF CONTENTS A. BACKGROUND ........................................................................... 2 B. DESIGN SUMMARY .................................................................... 3 1. Communications (COMM) ...................................................... 3 2. Data Processor & Sequencer (DP&S) ...................................... 3 Figure 1. PANSAT DP&S System Concept ................................................... 6 3. Power .................................................................................. 7 4. Structure Subsystem ............................................................... 8 Figure 2. PANSAT Structural Configuration .............................................. 10 5. Experiment Payload ............................................................. l0 ,, C. CONCLUSION ................................................... !........................ 11 [ APPENDIX ...................................................................... , ....................... 12 ! Fig. A1. Processor Main Board ................................................................. 12 Fig. A2. Telemetry Section, (A/D converters) ............................................
    [Show full text]
  • The Future of Amateur Radio Satellites in the Cubesat
    The Future of Amateur Radio Satellites in the CubeSat Era The Radio Amateur Satellite Corporation (AMSAT) seeks to place an ongoing series of 3U or 6U satellites into highly elliptical orbits to provide long duration communications service to the worldwide amateur radio community. AMSAT's technical challenges in preparing a HEO satellite mission are very similar to what is required for Lunar or Interplanetary CubeSat missions, including harsh thermal and radiation environments, little or no magnetic field to torque against, and challenging communications links, which make this mission very different from the many LEO CubeSats that have been built and launched by other organizations. AMSAT is seeking partnerships with other organizations to demonstrate new technologies in High Earth Orbit, to carry low cost scientific instruments into HEO and to qualify for NASA sponsored launches into Geosynchronous Transfer Orbit or other high altitude orbits whenever such an opportunity occurs. Radio Amateurs have been building and launching small satellites for over 50 years. OSCAR-1 was launched on December 12, 1961 as a secondary payload on the Thor- Agena rocket that launched the US Air Force Discoverer-36 mission. OSCAR-1 was the first satellite to be deployed as a secondary payload from a launch vehicle. The bureaucratic efforts required to secure permission to launch OSCAR-1 greatly exceeded the effort required to build the satellite and established a precedent for all subsequent secondary payload launches of the past five decades. OSCAR stands for “Orbiting Satellite Carrying Amateur Radio”. Today many agencies, laboratories, universities and high schools are building and launching dozens of small satellites every year, but it all started with OSCAR-1 in 1961.
    [Show full text]
  • [AMSAT-F] ANS Bulletin Francophone 302
    F6HBN-83FR De: [email protected] de la part de JC-Aveni [[email protected]] Envoyé: dimanche 28 octobre 2012 19:58 À: AMSAT- F; Amsat Francophone; Bernard Pidoux; bernard Pidoux Objet: [AMSAT-F] ANS Bulletin Francophone 302 Indicateur de suivi: Assurer un suivi État de l'indicateur: Rouge SB SAT@FRANCA $F-ANS-302-1 ANS bulletin en français 302-1 AMSAT NEWS SERVICE BULLETIN ANS 302 Capture sur Internet et traduction par TK5GH. Information sur l’AMSAT-NA dispo à l’URL : http://www.amsat.org (ou via) AMSAT-NA 850 Sligo Avenue, Suite 600 Silver Spring, Marylet 20910-4703 TEL : 301-589-6062 888-322-6728 FAX : 301-608-3410 Pour s’abonner à la liste du forum voyez à l’URL : http://www.amsat.org/amsat/listserv/menu.html =============================================================== L’ANS est un bulletin hebdomadaire libre d’accès issu de l’AMSAT North America le Radio Amateur Satellite Corporation. Il regroupe toutes les informations des acteurs de cette activité qui partagent le même intérêt pour les projets, les constructions, les lancements, et les opérations sur les satellites radio amateurs. ================================================================ Dans cette édition on trouvera : * Election des directeurs AMSAT 2012 * Fox-1 Satellite en développement * AMSAT News Service a un nouvel éditeur : EMike McCardel, KC8YLD * Japan PRISM Satellite commence son service Ham en AX.25 Store-and-Forward * WS4FSM hôte d'un des plus grand contact ARISS par le nombre d'auditeurs * Raport dispo sur le projet japonnais de sat UNISEC Satellite * 3 cartes FUNcube-2 pour le Clyde Space for UKube-1 Nanosatellite * Corée du Sud, Brésil, Ukraine prêts au vol orbital * NASA Accepte des applications d'élèves pour le HASP Ballon stratos 1 * ARISS Statut du 22 octobre 2012 ANS-302 AMSAT News Service Weekly Bulletins ------------------------------------------------------------------------ AMSAT Board Elects Senior Officers for 2012 Rappel de la liste des Dirigeants importants de la direction de l'AMSAT-NA avant l'ouverture des rencontres du 25 octobre au Symposium.
    [Show full text]
  • Orbital Debris: a Chronology
    NASA/TP-1999-208856 January 1999 Orbital Debris: A Chronology David S. F. Portree Houston, Texas Joseph P. Loftus, Jr Lwldon B. Johnson Space Center Houston, Texas David S. F. Portree is a freelance writer working in Houston_ Texas Contents List of Figures ................................................................................................................ iv Preface ........................................................................................................................... v Acknowledgments ......................................................................................................... vii Acronyms and Abbreviations ........................................................................................ ix The Chronology ............................................................................................................. 1 1961 ......................................................................................................................... 4 1962 ......................................................................................................................... 5 963 ......................................................................................................................... 5 964 ......................................................................................................................... 6 965 ......................................................................................................................... 6 966 ........................................................................................................................
    [Show full text]
  • Nova Tune a Radio Tuning Addition to Nova for Windows
    Nova_Tune A radio tuning addition to Nova for Windows 1 Table of Contents ? System requirements .....................................................................................2 ? List of radios supported................................................................................. 2 ? Hardware .......................................................................................................3 o Front panel.........................................................................................4 o Rear panel......................................................................................... 5 o Inside .................................................................................................6 ? Software ......................................................................................................11 o Setup................................................................................................11 ? Table of satellite frequencies .......................................................................17 Author Manufacturing International Sole Distributor Terrig Evans, ZL2JTX Michael R. Owen, W9IP David H Lamont, ZL2AMD E.T. Electronics Northern Lights Software Associates http://homepages.paradise.net.nz/lamontd/ Napier, New Zealand [email protected] [email protected] [email protected] http://www.nlsa.com Caveat The designers of this hardware and software disclaim any and all liability for any direct, indirect, incidental, consequential (including loss of profits) or punitive charges whether based
    [Show full text]
  • 2015 October
    TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1.
    [Show full text]
  • Ssc09-Xii-03
    SSC09-XII-03 The Promise of Innovation from University Space Systems: Are We Meeting It? Michael Swartwout St. Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT A popular notion among universities is that we are innovation-drivers in the staid, risk-adverse spacecraft industry – we are to professional small satellites what small satellites are to the “battlestars”. By contrast, professional industry takes a much different perspective on university-class spacecraft; these programs are good for attracting students to space and providing valuable pre-career training, but the actual flight missions are ancillary, even unimportant. Which opinion is correct? Both are correct. The vast majority of the 111 student-built spacecraft that have flown have made no innovative contributions. That is not to say that they have been without contribution. In addition to the inarguable benefits to education, many have served as radio Amateur communications, science experiments and even technological demonstrations. But “innovative”? Not so much. However, there have been two innovative contributors, whose contributions are large enough to settle the question: the University of Surrey begat SSTL, which helped create the COTS-based small satellite industry. Stanford and Cal Poly begat CubeSats, whose contributions are still being created today. This paper provides an update to our earlier submissions on the history of student-built spacecraft. Major trends identified in previous years will be re-examined with new data -- especially the bifurcation between larger-scale, larger-scope "flagship" programs and small-scale, reduced-mission "independents". In particular, we will demonstrate that the general history of student-built spacecraft has not been one of innovation, nor of development of new space systems -- with those few, extremely noteworthy, exceptions.
    [Show full text]
  • The SUNSAT Micro Satellite Program
    The SUNSAT Micro Satellite Program: Technical performance and limits of imaging micro satellites Sias Mostert, Thys Cronje and Francois du Plessis Department of Electrical and Electronic Engineering Stellenbosch University. Private Bag X1, MATIELAND, 7602. South Africa. Fax: +27 21 808 4981. Internet: [email protected]. http:\\sunsat.ee.sun.ac.za ABSTRACT - This paper examines the technical performance of the SUNSAT micro satellite bus, which is supporting the high resolution imager (HRI) payload on the micro satellite which is scheduled for launch in December 1998. A number of existing remote sensing satellites are investigated to determine some key parameters by which a micro satellite remote sensing mission should be evaluated. The SUNSAT 1 HRI instrument is then evaluated in this context and future possible missions suggested which is suitable for micro satellite missions. 1. INTRODUCTION SUNSAT, a professional micro satellite developed by a team of graduate students and engineers at Stellenbosch University in South Africa, is scheduled for launch from Vandenberg Airforce Base on a Delta II rocket, currently manifested for December 1998. The Flight Model hardware is complete and the pre-flight testing is drawing to a close. This paper examines the technical performance and capabilities of SUNSAT 1 micro satellite supporting the high resolution imager (HRI). Laboratory measured performance data are provided for the 15 m resolution 3 color CCD imager of SUNSAT, developed jointly by Stellenbosch University, the Council for Scientific Industrial Research (CSIR) in South Africa and the Korean Advanced Institute of Science and Technology (KAIST). The performance of the Attitude Determination and Control System (ADCS), which is required to support the imager, is described.
    [Show full text]
  • Repeaters, Satellites, EME and Direction Finding 23
    Repeaters, Satellites, EME and Direction Finding 23 Repeaters his section was written by Paul M. Danzer, N1II. In the late 1960s two events occurred that changed the way radio amateurs communicated. The T first was the explosive advance in solid state components — transistors and integrated circuits. A number of new “designed for communications” integrated circuits became available, as well as improved high-power transistors for RF power amplifiers. Vacuum tube-based equipment, expensive to maintain and subject to vibration damage, was becoming obsolete. At about the same time, in one of its periodic reviews of spectrum usage, the Federal Communications Commission (FCC) mandated that commercial users of the VHF spectrum reduce the deviation of truck, taxi, police, fire and all other commercial services from 15 kHz to 5 kHz. This meant that thousands of new narrowband FM radios were put into service and an equal number of wideband radios were no longer needed. As the new radios arrived at the front door of the commercial users, the old radios that weren’t modified went out the back door, and hams lined up to take advantage of the newly available “commer- cial surplus.” Not since the end of World War II had so many radios been made available to the ham community at very low or at least acceptable prices. With a little tweaking, the transmitters and receivers were modified for ham use, and the great repeater boom was on. WHAT IS A REPEATER? Trucking companies and police departments learned long ago that they could get much better use from their mobile radios by using an automated relay station called a repeater.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]