Highlights in Space 2009

Total Page:16

File Type:pdf, Size:1020Kb

Highlights in Space 2009 International Astronautical Federation International Institute of Space Law 94 bis, Avenue de Suffren 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 E-mail: [email protected] E-mail: [email protected] URL: http://www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: http://www.iafastro.com Highlights in Space 2009 Prepared in cooperation with the International Astronautical Federation and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: http://www.unoosa.org ST/SPACE/46 V.09-88652—January 2010 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2009 Prepared in cooperation with the International Astronautical Federation and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2010 ST/SPACE/46 This document has not been formally edited. INTRODUCTION This publication has been compiled from reports prepared for the United Nations Committee on the Peaceful Uses of Outer Space and covers the period from 1 November 2008 to 31 October 2009. The report was prepared by the International Astronautical Federation (IAF). In addition, the International Institute of Space Law (IISL) provided information for the section on international cooperation and space law. Many international experts from various specialized fields have contributed to the drafting of this comprehensive report. The information contained therein indicates a wide variety of ongoing space activities in national as well as international space programmes. This publication is available in English only. This 2009 review of latest developments in space science, technology, space applications, international collaboration and space law has the aim to inform a broad worldwide audience of recent advancements in the manifold field of outer space. We hope that “Highlights in Space 2009” can significantly contribute to all the efforts undertaken by the United Nations family, in particular the United Nations Office for Outer Space Affairs, in attempting to disseminate information on space activities and on the benefits involved to all nations of the world. iii iv CONTENTS Introduction............................................................................................................ iii I. OVERVIEW ............................................................................................... 1 II. SPACE TRANSPORTATION ................................................................... 3 A. Current Launch Activities..................................................................... 3 B. Development Activity........................................................................... 8 III. ROBOTIC EARTH ORBITAL ACTIVITIES ......................................... 13 A. Telecommunications........................................................................... 13 B. Remote Sensing .................................................................................. 27 IV. HUMANS IN EARTH ORBIT................................................................. 39 A. International Space Station Deployment and Operations ................... 39 B. Other Earth-Orbital Flight Operations................................................ 47 V. SPACE STUDIES AND EXPLORATION.............................................. 52 A. Astronomy and Astrophysics.............................................................. 52 B. Plasma and Atmospheric Physics ....................................................... 56 C. Space Exploration ............................................................................... 57 VI. TECHNOLOGY ADVANCEMENT ....................................................... 67 A. Propulsion………. .............................................................................. 67 B. Power…………… .............................................................................. 71 C. Spacecraft Design, Technology, and Development............................ 72 D. Materials and Structures ..................................................................... 73 E. Information Technology ..................................................................... 74 F. Automation and Robotics ................................................................... 76 G. Space Research Facilities.................................................................... 76 H. Environmental Effects of Space Flight............................................... 78 v VII. EDUCATION… ....................................................................................... 81 A. Teaching Programmes .................................................................. …..81 B. Public Awareness…............................................................................ 86 VIII. GLOBAL SPACE MARKETS AND OPPORTUNITIES ....................... 87 A. Government Programmes ................................................................... 87 B. Commercial Enterprises...................................................................... 89 IX. INTERNATIONAL COOPERATION AND SPACE LAW ................... 95 A. Global Developments and Organizations ......................................... 101 B. Europe……………........................................................................... 105 C. Africa and the Middle East ............................................................... 114 D. Asia and the Pacific .......................................................................... 116 E. The Americas……............................................................................ 121 vi I. OVERVIEW Space Transportation. The major space transportation events of 2009 were the launch of JAXA’s Ibuki spacecraft by a Mitsubishi H-2A, the launch of Japan’s H2 Transfer Vehicle (HTV) to the International Space Station (ISS) by the first H-2B rocket, the suborbital flight of NASA’s Ares I-X test vehicle, and four NASA space shuttle launches to the ISS. WhiteKnightTwo, the carrier aircraft for Virgin Galactic’s SpaceShipTwo tourist vehicle, conducted ten test flights this year, including an overpass of New Mexico’s Spaceport America site. Virgin Galactic signed a lease with New Mexico as the “anchor tenant” for that spaceport, and the spaceport’s operator signed an agreement with Spaceport Sweden, which will be located at the Esrange Space Center in Kiruna, to coordinate commercial space industry activities. Satellite Communications. Intelsat and SES spearheaded the creation of an industry-wide global database to collect information on interference and to endorse standardized training and certification for the personnel who install and operate satellite uplink ground stations. It will not deal with interference by terrestrial wireless broadband transmitters, which are governed by national regulating agencies. The heaviest and the most powerful commercial satellites ever launched were orbited this year: the 6.91-tonne mobile-communication satellite TerreStar-1 and the 20-kW Sirius-FM5 radio broadcast satellite. A new midrange satellite platform design was created by Boeing Satellite Systems International. Intelsat ordered the first four of these 702B spacecraft, which are in the 5.4-6.2-tonne, 6-12 kW range and employ components adapted from Boeing’s lighter 601 bus and the heavier 702. Earth Observations. ESA’s Gravity field and steady-state Ocean Circulation Explorer (Goce) satellite was finally launched after a year’s delays. It is now measuring Earth’s gravity field, modeling the geoid, and studying ocean circulation It has no moving parts and uses a unique throttleable electric ion propulsion system to compensate for upper-atmosphere drag. NASA’s Orbiting Carbon Observatory (OCO) was lost due to the failure of its Taurus XL launcher’s payload fairing. It was to have measured miniscule changes in carbon dioxide and oxygen concentrations in the atmosphere in order identify sources and sinks for carbon dioxide. Similar but different data are being received from Canadian microsatellite CanX-2 and Japan’s Ibuki satellite, launched successfully earlier in the year. The Eumetsat Council approved a $90-million contribution to the Jason-3 ocean altimetry satellite, enabling initiation of its development. It will follow the previous French-U.S. projects Topex-Poseidon, Jason-1, and Jason-2 in measuring wave heights and ocean currents. 1 Earth-Orbit Operations for Humans. The fourth and final solar-power wing was delivered to the International Space Station, as were both the pressurized and external modules of the Japanese Kibo laboratory. The crew size was increased from three to the station’s full complement of six. NASA contracted with the Russian space agency Roskosmos for crew transportation to and from the station after the planned Shuttle retirement in 2010, and issued seven-year contracts to two commercial firms for station resupply flights following that retirement. The companies will be solely responsible for designing, building, and launching the rockets, a first for NASA. During nearly 37 hours of spacewalks, NASA astronauts replaced
Recommended publications
  • Preface Patrick Besha, Editor Alexander Macdonald, Editor in The
    EARLY DRAFT - NASAWATCH.COM/SPACEREF.COM Preface Patrick Besha, Editor Alexander MacDonald, Editor In the next decade, NASA will seek to expand humanity’s presence in space beyond the International Space Station in low-Earth orbit to a new habitation platform orbiting the moon. By the late 2020’s, astronauts will live and work far deeper in space than ever before. The push to cis-lunar orbit is part of a stepping-stone approach to extend our reach to Mars and beyond. This decision to explore ever farther destinations is a familiar pattern in the history of American space exploration. Another major pattern with historical precedent is the transition from public sector exploration to private sector commercialization. After the government has developed and demonstrated a capability in space, whether it be space-based communications or remote sensing, the private sector has realized its market potential. As new companies establish a presence, the government withdraws from the market. In 2015, we are once again at a critical stage in the development of space. The most successful long-term human habitation in space, orbiting the Earth continuously since 1998, is the International Space Station. Currently at the apex of its capabilities and the pinnacle of state-of-the-art space systems, it was developed through the investments and labors of over a dozen nations and is regularly re-supplied by cargo delivery services. Its occupants include six astronauts and numerous other organisms from Earth’s ecosystems from bacteria to plants to rats. Research is conducted on the spacecraft from hundreds of organizations worldwide ranging from academic institutions to large industrial companies and from high-tech start-ups to high-school science classes.
    [Show full text]
  • Dr. Wagner Vendrame CV
    W. Vendrame ________________________________________________________________________ Wagner A. Vendrame Professor, Environmental Horticulture Department Institute of Food and Agricultural Sciences University of Florida 2043 IFAS Research Dr., Gainesville, Fl 32611 Phone: 352-273-4500 (office), 786-202-0040 (cell) Email: [email protected] Website: http://hort.ufl.edu/faculty-profiles/wagner-vendrame/ EDUCATION University of Georgia Horticulture Ph.D. 1998 University of São Paulo Plant Physiology & Biochemistry M.S. 1994 University of São Paulo Agronomic Engineering B.S. 1987 EMPLOYMENT 2020-Present Professor and Assistant Chair, Environmental Horticulture Department, Gainesville, FL 2013-2020 Professor, Environmental Horticulture Department, Tropical Research and Education Center, University of Florida, Homestead, FL 2007-2013 Associate Professor, Environmental Horticulture Department, Tropical Research and Education Center, University of Florida, Homestead, FL 2001-2007 Assistant Professor, Environmental Horticulture Department, Tropical Research and Education Center, University of Florida, Homestead, FL 1998-2001 Post-Doctoral Associate, D. B. Warnell School of Forest Resources University of Georgia, Athens, GA RESEARCH ASSIGNMENT (60%) RESEARCH Improved Production and Conservation of Plants using Macro and Micropropagation, Bioreactor Technology, and Cryopreservation. 1 W. Vendrame ________________________________________________________________________ • Current research responsibilities include production and conservation of plants
    [Show full text]
  • Project Number: JMW-USC1
    Project Number: JMW-USC1 Department of Social Science and Policy Studies THE FUTURE OF UNMANNED SPACE: A SPECULATIVE ANALYSIS OF THE COMMERCIAL MARKET An Interactive Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Peter Brayshaw ______________________________ Brooks Farnham ______________________________ Jon Leslie December 16, 2004 _____________________________ ________________________________ Professor John M. Wilkes, Advisor Professor Peter Campisano, Co-Advisor Abstract: This report is one of many which deal with the unmanned space race. It is a prediction of who will have the greatest competitive advantage in the commercial market over the next 25 years, based on historical analogy. Background information on Russia, China, Japan, the United States and the European Space Agency, including the launch vehicles and launch services each provides, is covered. The new prospect of space platforms is also investigated. 2 Table of Contents Abstract: ...................................................................................................... 2 Table of Contents ......................................................................................... 3 Introduction ................................................................................................. 5 Literature Review ...................................................................................... 5 Project
    [Show full text]
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • Roundup Fall 2015
    National Aeronautics and Space Administration Roundup LYNDON B. JOHNSON SPACE CENTER Fall | 2015 Global (and cosmic) expansion Expansión global (y cósmica) In this edition… Guest Column 3 ISS Science Corner 4 Veteran explorers slated for future commercial crew flights 5 All aboard the education I’M WRITING THIS COLUMN having only been on the job for about two station! weeks, so I’m still learning the duties of a deputy director. While I have 6 White House lands at the been to the ninth floor of Building 1 many times, it is interesting how I house of human spaceflight have begun to see the center differently as I take on this new role. to praise our Commitment to I was the Orion Program manager for nearly eight years. During that Action for Hispanic education time, I experienced many transitions in NASA leadership and policy. 8 ‘Leaf’ it to NASA to grow Some of these were difficult for the team to weather, but they met the lettuce on space station challenge. I believe these experiences taught me how to anticipate, adapt and lead a team through change. It is my hope that these 9 It’s complicated: New Pluto experiences will provide me the insight to help Ellen lead the center images from NASA’s New into NASA’s next chapters of human spaceflight. Horizons offer many surprises I know that the other programs and directorates at JSC are faced 10 Meet Delene Sedillo, with their own specific, dynamic environments. In the coming weeks, NASA/PHOTO Associate Director, Office of I’ll be taking some time to get an understanding of the strategies and Mark Geyer Procurement challenges involving all of the organizations here at JSC.
    [Show full text]
  • Orbital Debris Program Office Figure 1
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 13, Issue 1 January 2009 Inside... New Debris Seen from Decommissioned Fengyun-1C Debris: Two Years Later 2 Satellite with Nuclear Power Source The ESA’s ATV-1 Reentry Event 3 A 21-year-old satellite containing a dormant According to Russian reports, the nuclear reactors nuclear reactor was the source of an unexpected on Cosmos 1818 and Cosmos 1867 functioned for Two New Microsatellite debris cloud in early July 2008. Launched by the approximately 5 and 11 months, respectively. For Impact Tests 4 former Soviet Union in February 1987, Cosmos the next two decades, the two inactive spacecraft 1818 (International Designator 1987-011A, circled the Earth without significant incident. Review of Different U.S. Satellite Number 17369) was the first of two Following the fragmentation event on or about Solar Cycle 24 vehicles designed to test a new, more advanced 4 July 2008, the U.S. Space Surveillance Network Predictions 7 nuclear power supply in low Earth orbit. Dozens was able to produce orbital data on 30 small debris of small particles were released during the still- (Figure 2). The majority of these debris were ejected Don Kessler Wins unexplained debris generation event. in a posigrade direction with velocities of less Space Safety Pioneer Cosmos 1818 and its sister spacecraft, than 15 meters per second, suggesting a relatively Award 8 Cosmos 1867 (Figure 1), carried a thermionic low energy event. From radar detections, a larger nuclear power supply, in contrast to the simpler, number of very small debris appear to have also Abstracts from the thermoelectric nuclear device which provided been released, but routine tracking of these debris NASA OD Program energy to the well-known RORSATs (Radar Ocean has proven difficult.
    [Show full text]
  • G. Madhavan Nair - Wikipedia, the Free Encyclopedia
    G. Madhavan Nair - Wikipedia, the free encyclopedia G. Madhavan Nair From Wikipedia, the free encyclopedia G. Madhavan Nair (Malayalam: ജി. മാധവ നായ) (born October 31, 1943) is the G Madhavan Nair present Chairman of Indian Space Research Organisation and Secretary to the Department of Space, Government of India since September 2003. He is also the Chairman, Space Commission and acts as the Chairman of Governing Body of the Antrix Corporation, Bangalore. Madhavan Nair was awarded the Padma Vibhushan, India's second highest civilian honour, on January 26, 2009.[1][2] Contents 1 Early life 2 Career 3 As Chairman of ISRO 4 Additional responsibilities G Madhavan Nair 5 Awards Born 31 October 1943 6 Honours Thiruvanathapuram, India 7 Fellowships/Memberships 8 Lashkar Threat Residence India 9 References Nationality Indian 10 External links Fields Rocket Technology Institutions Indian Space Research Organisation Bhabha Atomic Research Center Early life Alma mate r B.Sc. (Engineering - Electrical & Communication) (1966), College of Nair was born at Neyyattinkara near Thiruvananthapuram, Kerala, India. He also studied in his Engineering, Trivandrum early life in Kanyakumari District. He graduated with a B.Sc. in Engineering (1966) from College Known for Indian Space Program of Engineering, Thiruvananthapuram, Kerala University with specialization in Electrical & Communication Engineering. After his graduation Nair attended a training program at the Bhabha Notable Padma Bhushan (1998) awards Atomic Research Center (BARC) Training School, Mumbai. Padma Vibhushan (2009) Career Nair is a leading technologist in the field of rocket systems and has made significant contribution to the development of multi-stage satellite launch vehicles, achieving self-reliance in independent access to space using indigenous technologies.
    [Show full text]
  • 3640 H 28066 Mpeg2/Fta (Gak Di Acak) Ariana National Satelit
    Thaicom 5/6A at 78.5°E (Arah Barat dari Palapa D) 3640 H 28066 Mpeg2/Fta (gak di acak) Ariana National Satelit: Insat 3a (93,5 BT) 4141 V 5150 (C Band) Mpeg2/Fta Beam menjangkau seluruh Indonesia Ke arah barat dari Palapa D, sebelum Measat 3 Telkom 1 (108,5 °E) 3776 H 4280 MPEG2/FTA/BISS HeilongjiangTV (Full Match) Chinasat 6A (125 BT) - Arah Timur dari Palapa D dan Chinasat 6B 3983 H 6880 MPEG2/FTA XJTV5 (Full Match) Chinasat 6A (125 BT) - Arah Timur dari Palapa D dan Chinasat 6B 4121 H 27500 MPEG2/FTA CCTV1 dengan frekuensi : 03840 SymbolRate: 27500 polaritas : H CCTV1 dengan frekuensi 3840 SR 27500 pol H akan menyiarkan bergantian dengan CCT V7 ( frekuensi sama) ?#?SATELIT? & CHANNEL Satelit: ST 2 (88.0°E) ID: SCC TV3 (Iran) 3587 H 12500 (C Band) 11050 V 30000 (Ku Band) MPEG4/SD/BISS SID: 0103/0068 KEY: 1111 1111 1111 1111 Satelit: ST 2 (88.0°E) ID: SCC Varzesh (Ku Band) (Iran) 11050 V 30000 MPEG4/SD/BISS SID: 0116/0117/0075 KEY: 1111 1111 1111 11i11 Satelit: Telkom 1 (108 BT) RTTL (Timor Leste) 3775 H 4280 (C Band) MPEG2/SD/FTA/BISS Satelit: Measat 3 (91,5 BT) TV1 (Malaysia) 3918 H 18385 MPEG4/SD/HD/FTA Satelit: Insat 3a (93,5 BT) Ariana (Afghanistan) 4141 V 5151 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6b (115,5 BT) CCTV 1 (China) 3840 H 27500 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6a (125 BT) CCTV 1 (China) 4080 H 27500 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6a (125 BT) XJTV 5 (China) 4120 H 27500 (C Band) MPEG2/SD/FTA Satelit: Optus D1 (160.0°E) ID: SBS One HD 12390 H 12600 (Ku Band) (MPEG4/HD/FTA) Satelit: Thaicom5 (78,5 BT) CH8 SD, CH8 HD (Thailand) 3800 H 30000 MPEG2/SD/BISS(CH8 HD, Mpeg4/HD/BISS Satelit: Thaicom5 (78,5 BT) BBTV Ch 7 SD, BBTV Ch 7 HD (Thailand) -BBTV Ch 7 SD 3725 H 4700 -BBTV Ch 7 HD 3835 H 8000 MPEG4/HD/BISS 1.
    [Show full text]
  • NEW FRONTIERS Annual Report 2017 Worldreginfo - 4245Ca48-E355-44B8-9Afc-76729Ab4a35e Worldreginfo - 4245Ca48-E355-44B8-9Afc-76729Ab4a35e CONTENTS
    NEW FRONTIERS Annual Report 2017 WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e CONTENTS SES AT A GLANCE 4 - Introduction 5 - SES Video in Numbers 6 - SES Video – Market Description 8 - SES Networks – Market Description 9 - SES Networks in Numbers 10 - Company Structure 12 - Launch Manifest 13 - Network Map 14 2017 IN REVIEW 16 - Letter from the Chairman of the Board - Romain Bausch 17 - Letter from the President and CEO – Karim Michel Sabbagh 21 - Financial Highlights 24 - SES Video in 2017 25 - SES Networks in 2017 27 - SES Innovation in 2017 30 CORPORATE GOVERNANCE 32 Corporate Social Responsibility (CSR) 58 FINANCIAL REVIEW BY MANAGEMENT 62 CONSOLIDATED FINANCIAL STATEMENTS 70 SES S.A. ANNUAL ACCOUNTS 138 SES Annual Report 2017 3 WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e SES AT A GLANCE WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e INTRODUCTION SES supplies the power of connection everywhere on the globe - shaping experiences and opportunities for countless people, businesses, and organisations. Our reliable satellite and ground communications solutions deliver both video distribution services and network connectivity to urban centres and remote villages across the world. Innovation shapes the company we are, and our pursuit provide unrivalled convenience, low cost, low latency and of excellence made us the first to deliver a differentiated high reliability for customers. We go the extra mile, also and scalable GEO-MEO offering worldwide, with more delivering our network as a managed service so that our than 50 satellites in Geostationary Earth Orbit (GEO) and customers are able to stay focused on how to best maximise 12 in Medium Earth Orbit (MEO).
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]