Space Policies, Issues and Trends in 2007/2008
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Esa Bulletin 135 - August 2008 45 Vega
Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. The development of Vega passed major milestones in 2007 and 2008, providing essential results in terms of test data and design consolidation. These will lead to the Qualification Flight from Europe’s Spaceport in French Guiana at the end of 2009. This will be an important step in the implementation of the European strategy in the launcher sector and the guarantee of access to space for Europe, as endorsed by the ESA Ministerial Council in 2003. The ex p l o i t ation of this new ESA developed launcher will widen the range of launch services offered by launchers developed and produced by European industry and will improve launch flexibility by providing a more adapted response for a wide range of European institutional space missions, as well as an optimised family of launchers to serve commercial market needs. esa bulletin 135 - august 2008 45 Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. -
Russia's Posture in Space
Russia’s Posture in Space: Prospects for Europe Executive Summary Prepared by the European Space Policy Institute Marco ALIBERTI Ksenia LISITSYNA May 2018 Table of Contents Background and Research Objectives ........................................................................................ 1 Domestic Developments in Russia’s Space Programme ............................................................ 2 Russia’s International Space Posture ......................................................................................... 4 Prospects for Europe .................................................................................................................. 5 Background and Research Objectives For the 50th anniversary of the launch of Sputnik-1, in 2007, the rebirth of Russian space activities appeared well on its way. After the decade-long crisis of the 1990s, the country’s political leadership guided by President Putin gave new impetus to the development of national space activities and put the sector back among the top priorities of Moscow’s domestic and foreign policy agenda. Supported by the progressive recovery of Russia’s economy, renewed political stability, and an improving external environment, Russia re-asserted strong ambitions and the resolve to regain its original position on the international scene. Towards this, several major space programmes were adopted, including the Federal Space Programme 2006-2015, the Federal Target Programme on the development of Russian cosmodromes, and the Federal Target Programme on the redeployment of GLONASS. This renewed commitment to the development of space activities was duly reflected in a sharp increase in the country’s launch rate and space budget throughout the decade. Thanks to the funds made available by flourishing energy exports, Russia’s space expenditure continued to grow even in the midst of the global financial crisis. Besides new programmes and increased funding, the spectrum of activities was also widened to encompass a new focus on space applications and commercial products. -
Space UK Earth’S Surface Water
Issue #49 IN THIS ISSUE: Staring at the Sun MYSTERIOUS Helpline from Space Weightless in the Clouds MERCURY Contents News Cornwall Calling Space Weather Watcher Mapping the Route to Mars Honour for UK Astronaut New Satellite Tracks Pollution UK-France Space Deal In Pictures The Sun Features Mysterious Mercury Zero-G Science Helpline from Space Education Resources UK Space History Skylark Made in the UK Earth-i Info News Cornwall Calling The first Moon landing Cornwall Calling Credit: NASA Cornwall could soon be Antennas at Goonhilly beamed communicating with the Moon and images of the 1969 Moon landing Mars, following the announcement and, shortly after it was built in that the world’s first commercial deep 1985, the 32-metre Goonhilly-6 space communication base will be at antenna carried the historic Live Aid the Goonhilly Earth Station. concert broadcast to TV viewers An £8.4 million investment will see a around the world. two-year upgrade of the Goonhilly-6 A Space Industry Bill, announced antenna so it can communicate as part of the Queen’s speech in One of the large dishes at Goonhilly with future robotic and crewed 2017, will introduce new powers missions to the Moon and Mars. The to allow rocket and spaceplane Credit: Goonhilly Cornwall and Isles of Scilly Local launches from UK soil. Goonhilly is Enterprise Partnership’s Growth Deal also offering spacecraft tracking and the European Space Agency and communications facilities as (ESA) – which the UK Space Agency part of the Spaceport Cornwall contributes to – funded the contract, funding bid. which will allow Goonhilly to support “We see huge opportunities for ESA’s worldwide network of spacecraft the developing space sector in monitoring ground stations. -
Les Fusées-Sondes De Sud-Aviation
Les fusées-sondes de Sud-Aviation Jean-Jacques Serra Commission Histoire de la 3AF Origines : Centre national d'études des télécommunications (CNET) • Loi du 4 mai 1944, validée le 29 janvier 1945 • Demandes d'études - ministères (Guerre, Air, Marine), - Radiodiffusion française, - Comité d’action scientifique de la Défense nationale,... • Etudes sur la propagation radioélectrique plusieurs départements (Tubes et hyperfréquence, Transmission, Laboratoire national de radioélectricité) • Recherches sur la troposphère et sur l’ionosphère Programme spatial du CNET lancé en 1957 selon deux directions : • participation au lancement de fusées-sondes pour l’exploration de la haute atmosphère • traitement scientifique des données fournies par les signaux émis par les satellites artificiels Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 2 Contexte : Fusées-sondes existantes Fusées du CASDN pour l'AGI : • Véronique AGI : dérivée des Véronique N et NA (1952-1954) 60 kg à 210 km d'altitude • Monica IV et V : dérivées des Monica I à III (1955-1956) 15 kg à 80 km ou 140 km d'altitude Fusées de l'ONERA utilisées par le CEA : • Daniel : dérivé d'Ardaltex (1957-1959) 15 kg à 125 km d'altitude • Antarès : dérivé de l'engin d'essais de rentrée (1959-1961) 35 kg à 280 km d'altitude Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 3 Définition des besoins du CNET Envoi d'une charge utile de 32 kg à 80 km, 120 km, 400 km et 1000 km d'altitude • fusées commandées à Sud Aviation • unité mobile construite -
The Space-Based Global Observing System in 2010 (GOS-2010)
WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available. -
Robotic Arm.Indd
Ages: 8-12 Topic: Engineering design and teamwork Standards: This activity is aligned to national standards in science, technology, health and mathematics. Mission X: Train Like an Astronaut Next Generation: 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely A Robotic Arm to meet the criteria and constraints of the problem. 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be EDUCATOR SECTION (PAGES 1-7) improved. STUDENT SECTION (PAGES 8-15) Background Why do we need robotic arms when working in space? As an example, try holding a book in your hands straight out in front of you and not moving them for one or two minutes. After a while, do your hands start to shake or move around? Imagine how hard it would be to hold your hands steady for many days in a row, or to lift something really heavy. Wouldn’t it be nice to have a really long arm that never gets tired? Well, to help out in space, scientists have designed and used robotic arms for years. On Earth, scientists have designed robotic arms for everything from moving heavy equipment to performing delicate surgery. Robotic arms are important machines that help people work on Earth as well as in space. Astronaut attached to a robotic arm on the ISS. Look at your arms once again. Your arms are covered in skin for protection. -
Accesso Autonomo Ai Servizi Spaziali
Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag. -
Ssc09-Xii-03
SSC09-XII-03 The Promise of Innovation from University Space Systems: Are We Meeting It? Michael Swartwout St. Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT A popular notion among universities is that we are innovation-drivers in the staid, risk-adverse spacecraft industry – we are to professional small satellites what small satellites are to the “battlestars”. By contrast, professional industry takes a much different perspective on university-class spacecraft; these programs are good for attracting students to space and providing valuable pre-career training, but the actual flight missions are ancillary, even unimportant. Which opinion is correct? Both are correct. The vast majority of the 111 student-built spacecraft that have flown have made no innovative contributions. That is not to say that they have been without contribution. In addition to the inarguable benefits to education, many have served as radio Amateur communications, science experiments and even technological demonstrations. But “innovative”? Not so much. However, there have been two innovative contributors, whose contributions are large enough to settle the question: the University of Surrey begat SSTL, which helped create the COTS-based small satellite industry. Stanford and Cal Poly begat CubeSats, whose contributions are still being created today. This paper provides an update to our earlier submissions on the history of student-built spacecraft. Major trends identified in previous years will be re-examined with new data -- especially the bifurcation between larger-scale, larger-scope "flagship" programs and small-scale, reduced-mission "independents". In particular, we will demonstrate that the general history of student-built spacecraft has not been one of innovation, nor of development of new space systems -- with those few, extremely noteworthy, exceptions. -
Current Affairs Monthly Capsule I April 2019 Curren 1
Current Affairs Monthly Capsule I Current Affairs Weekly Capsule I 9thto 15th April 2019 September 2018 1 | P a g e Current Affairs Monthly Capsule I Current Affairs Weekly Capsule I 9thto 15th April 2019 September 2018 Table of Contents Awards &Honours .................................................................................................................................................. 3 Days & Events ......................................................................................................................................................... 6 International Affairs ............................................................................................................................................... 9 Personalities in News ........................................................................................................................................... 16 Government Policies & Schemes .......................................................................................................................... 18 Science & Technology ........................................................................................................................................... 19 Committees & Recommendations ....................................................................................................................... 23 Business & Economy ............................................................................................................................................. 24 Sports ................................................................................................................................................................... -
The International Space Station Partners: Background and Current Status
The Space Congress® Proceedings 1998 (35th) Horizons Unlimited Apr 28th, 2:00 PM Paper Session I-B - The International Space Station Partners: Background and Current Status Daniel V. Jacobs Manager, Russian Integration, International Partners Office, International Space Station ogrPr am, NASA, JSC Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Jacobs, Daniel V., "Paper Session I-B - The International Space Station Partners: Background and Current Status" (1998). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th/april-28-1998/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE INTERNATIONAL SPACE STATION: BACKGROUND AND CURRENT STATUS Daniel V. Jacobs Manager, Russian Integration, International Partners Office International Space Station Program, NASA Johnson Space Center Introduction The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven interna- tional partners and participants encompassing fifteen countries are involved in the ISS. Each partner is designing, developing and will be operating separate pieces of hardware, to be inte- grated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/ cosmonauts, and support services will be provided by multiple partners, but functioning in a coordinated, integrated fashion. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of opera- tions and sustaining engineering centers, astronaut training, and seven Space Shuttle/Mir docking missions. -
IFC-AMC Motion to Dismiss
Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 34-1 Filed 02/16/18 Page 1 of 1 PageID #: 1030 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. § § C.A. No. 17-1494-VAC-SRF IFC ASSET MANAGEMENT COMPANY, § LLC, § § Defendant. § [PROPOSED] ORDER WHEREAS, Defendant IFC Asset Management Company, LLC, having moved to dismiss the claims in Plaintiff Juana Doe I et al.’s Complaint (D.I. 1); and, WHEREAS, the Court having considered the briefs and arguments in support of and in opposition to said Motion; IT IS HEREBY ORDERED this _______ day of ____________, 2018, that the Motion is GRANTED. Plaintiffs’ Complaint is dismissed with prejudice. _______________________________ United States District Judge RLF1 18887565v.1 Case 1:17-cv-01494-VAC-SRF Document 35 Filed 02/16/18 Page 1 of 51 PageID #: 1031 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE JUANA DOE I et al., § § Plaintiffs, § § vs. -
A Call for a New Human Missions Cost Model
A Call For A New Human Missions Cost Model NASA 2019 Cost and Schedule Analysis Symposium NASA Johnson Space Center, August 13-15, 2019 Joseph Hamaker, PhD Christian Smart, PhD Galorath Human Missions Cost Model Advocates Dr. Joseph Hamaker Dr. Christian Smart Director, NASA and DoD Programs Chief Scientist • Former Director for Cost Analytics • Founding Director of the Cost and Parametric Estimating for the Analysis Division at NASA U.S. Missile Defense Agency Headquarters • Oversaw development of the • Originator of NASA’s NAFCOM NASA/Air Force Cost Model cost model, the NASA QuickCost (NAFCOM) Model, the NASA Cost Analysis • Provides subject matter expertise to Data Requirement and the NASA NASA Headquarters, DARPA, and ONCE database Space Development Agency • Recognized expert on parametrics 2 Agenda Historical human space projects Why consider a new Human Missions Cost Model Database for a Human Missions Cost Model • NASA has over 50 years of Human Space Missions experience • NASA’s International Partners have accomplished additional projects . • There are around 70 projects that can provide cost and schedule data • This talk will explore how that data might be assembled to form the basis for a Human Missions Cost Model WHY A NEW HUMAN MISSIONS COST MODEL? NASA’s Artemis Program plans to Artemis needs cost and schedule land humans on the moon by 2024 estimates Lots of projects: Lunar Gateway, Existing tools have some Orion, landers, SLS, commercially applicability but it seems obvious provided elements (which we may (to us) that a dedicated HMCM is want to independently estimate) needed Some of these elements have And this can be done—all we ongoing cost trajectories (e.g.