Accesso Autonomo Ai Servizi Spaziali
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Presentation
100 years of history of AIDAA Associazione Italiana di Aeronautica e Astronautica A.I.D.A.A. – APS Via Salaria 851 – 00138 – Rome – Italy www.aidaa.it Foundation of A.I.D.A. The Italian Association of Aerotechnics 1920 ▪ The early years (1920-1950) End of first world war: General Maurizio Mario Moris, defined as “the driving force of the Italian Air Force,” who had directed the “Military Higher School of Aeronautical Constructions” of the “Brigade for Specialist Engineers” since 1910, proposed the foundation of a “scientific society for the progress of aeronautics in which agreement and scientific information among the experts is carried forward with conferences, discussions and periodic meetings.” Foundation of A.I.D.A. The Italian Association of Aerotechnics 1920 ▪ The early years (1920-1950) On June 29, 1920, the most excellent Italian experts in aerotechnics, under Vito Volterra and Maurizio Moris's initiative, met up at the Aero Club of Rome in Via del Tritone on Friday, July 2 at 9 p.m. and founded A.I.D.A. In the same meeting, on a proposal by Volterra, Gen. Maurizio Mario Moris was elected President. In 1922 the initial territorial Branches were set up. The first one was the Milan Branch in 1922, then those of Naples, Rome, and Turin in 1923. After the British Royal Aeronautical Society, founded in 1866, A.I.D.A. is the second oldest aeronautical association globally. Foundation of A.I.D.A. The Italian Association of Aerotechnics 1920 ▪ The early years (1920-1950) Moris proposed and organized conferences and seminars; during his presidency, the Journal of the Association was established. -
Esa Bulletin 135 - August 2008 45 Vega
Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. The development of Vega passed major milestones in 2007 and 2008, providing essential results in terms of test data and design consolidation. These will lead to the Qualification Flight from Europe’s Spaceport in French Guiana at the end of 2009. This will be an important step in the implementation of the European strategy in the launcher sector and the guarantee of access to space for Europe, as endorsed by the ESA Ministerial Council in 2003. The ex p l o i t ation of this new ESA developed launcher will widen the range of launch services offered by launchers developed and produced by European industry and will improve launch flexibility by providing a more adapted response for a wide range of European institutional space missions, as well as an optimised family of launchers to serve commercial market needs. esa bulletin 135 - august 2008 45 Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. -
Satellite Situation Report
NASA Office of Public Affairs Satellite Situation Report VOLUME 17 NUMBER 6 DECEMBER 31, 1977 (NASA-TM-793t5) SATELLITE SITUATION~ BEPORT, N8-17131 VOLUME 17, NO. 6 (NASA) 114 F HC A06/mF A01 CSCL 05B Unclas G3/15 05059 Goddard Space Flight Center Greenbelt, Maryland NOTICE .THIS DOCUMENT HAS'BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS' ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. OFFICE OF PUBLIC AFFAIRS GCDDARD SPACE FLIGHT CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VOLUME 17 NO. 6 DECEMBER 31, 1977 SATELLITE SITUATION REPORT THIS REPORT IS PUBLIShED AND DISTRIBUTED BY THE OFFICE OF PUBLIC AFFAIRS, GSFC. GODPH DRgP2 FE I T ERETAO5MUJS E SMITHSONIAN ASTRCPHYSICAL OBSERVATORY. SPACEFLIGHT TRACKING AND DATA NETWORK. NOTE: The Satellite Situation Report dated October 31, 1977, contained an entry in the "Objects Decayed Within the Reporting Period" that 1977 042P, object number 10349, decayed on September 21, 1977. That entry was in error. The object is still in orbit. SPACE OBJECTS BOX SCORE OBJECTS IN ORBIT DECAYED OBJECTS AUSTRALIA I I CANACA 8 0 ESA 4 0 ESRO 1 9 FRANCE 54 26 FRANCE/FRG 2 0 FRG 9 3 INCIA 1 0 INDONESIA 2 0 INTERNATIONAL TELECOM- MUNICATIONS SATELLITE ORGANIZATION (ITSO) 22 0 ITALY 1 4 JAPAN 27 0 NATC 4 0 NETHERLANDS 0 4 PRC 6 14 SPAIN 1 0 UK 11 4 US 2928 1523 USSR 1439 4456 TOTAL 4E21 6044 INTER- CBJECTS IN ORIT NATIONAL CATALOG PERIOD INCLI- APOGEE PERIGEE TQANSMITTTNG DESIGNATION NAME NUMBER SOURCE LAUNCH MINUTES NATION KM. -
Qualification Over Ariane's Lifetime
r bulletin 94 — may 1998 Qualification Over Ariane’s Lifetime A. González Blázquez Directorate of Launchers, ESA, Paris M. Eymard Groupe Programme CNES/Arianespace, Evry, France Introduction Similarly, the RL10 engine on the Centaur stage The primary objectives of the qualification of the Atlas launcher has been the subject of an activities performed during the operational ongoing improvement programme. About 5000 lifetime of a launcher are: tests were performed before the first flight, and – to verify the qualification status of the vehicle 4000 during the subsequent ten years. – to resolve any technical problems relating to subsystem operations on the ground or in On-going qualification activities of a similar flight. nature were started for the Ariane-3 and 4 launchers in 1986, and for Ariane-5 in 1996. Before focussing on the European family of They can be classified into two main launchers, it is perhaps informative to review categories: ‘regular’ and ‘one-off’. just one or two of the US efforts in the area of solid and liquid propulsion in order to put the Ariane-3/4 accompanying activities Ariane-related activities into context. Regular activities These activities are mainly devoted to In principle, the development programme for a launcher ends with the verification of the qualification status of the qualification phase, after which it enters operational service. In various launcher subsystems. They include the practice, however, the assessment of a launcher’s reliability is a following work packages: continuing process and qualification-type activities proceed, as an – Periodic sampling of engines: one HM7 and extension of the development programme (as is done in aeronautics), one Viking per year, tested to the limits of the over the course of the vehicle’s lifetime. -
High-Thrust In-Space Liquid Propulsion Stage: Storable Propellants
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2014 – ID 2968378 High-Thrust in-Space Liquid Propulsion Stage: Storable Propellants Etienne Dumont, Alexander Kopp, Carina Ludwig, Nicole Garbers DLR, Space Launcher Systems Analysis (SART), Bremen, Germany [email protected] Abstract In the frame of a project funded by ESA, a consortium led Subscripts, Abbreviations by Avio in cooperation with Snecma, Cira, and DLR is ATV Automated Transfer Vehicle performing the preliminary design of a High-Thrust in- CDF Concurrent Design Facility Space Liquid Propulsion Stage for two different types of ECSS European Cooperation on Space manned missions beyond Earth orbit. For these missions, Standardization one or two 100 ton stages are to be used to propel a Elec assy electronic assembly manned vehicle. Three different propellant combinations; EPS Etage à propergols stockables (Ariane 5’s LOx/LH2, LOx/CH4 and MON-3/MMH are being storable propellant stage) compared. GNC Guidance Navigation and Control HTS High-Thrust Stage The preliminary design of the storable variant (MON- IF Interface 3/MMH) has been performed by DLR. The Aestus II ISS International Space Station engine with a large nozzle expansion ratio has been LEO Low Earth Orbit chosen as baseline. A first iteration has demonstrated, that LEOP Launch and Early Orbit Phase it indeed provides the best performance for the storable LH2 Liquid Hydrogen propellant combination, when considering all engines LOx Liquid Oxygen available today or which may be available in a short- to MLI Multi-Layer Insulation medium term. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Space UK Earth’S Surface Water
Issue #49 IN THIS ISSUE: Staring at the Sun MYSTERIOUS Helpline from Space Weightless in the Clouds MERCURY Contents News Cornwall Calling Space Weather Watcher Mapping the Route to Mars Honour for UK Astronaut New Satellite Tracks Pollution UK-France Space Deal In Pictures The Sun Features Mysterious Mercury Zero-G Science Helpline from Space Education Resources UK Space History Skylark Made in the UK Earth-i Info News Cornwall Calling The first Moon landing Cornwall Calling Credit: NASA Cornwall could soon be Antennas at Goonhilly beamed communicating with the Moon and images of the 1969 Moon landing Mars, following the announcement and, shortly after it was built in that the world’s first commercial deep 1985, the 32-metre Goonhilly-6 space communication base will be at antenna carried the historic Live Aid the Goonhilly Earth Station. concert broadcast to TV viewers An £8.4 million investment will see a around the world. two-year upgrade of the Goonhilly-6 A Space Industry Bill, announced antenna so it can communicate as part of the Queen’s speech in One of the large dishes at Goonhilly with future robotic and crewed 2017, will introduce new powers missions to the Moon and Mars. The to allow rocket and spaceplane Credit: Goonhilly Cornwall and Isles of Scilly Local launches from UK soil. Goonhilly is Enterprise Partnership’s Growth Deal also offering spacecraft tracking and the European Space Agency and communications facilities as (ESA) – which the UK Space Agency part of the Spaceport Cornwall contributes to – funded the contract, funding bid. which will allow Goonhilly to support “We see huge opportunities for ESA’s worldwide network of spacecraft the developing space sector in monitoring ground stations. -
Rocket Propulsion Fundamentals 2
https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force. -
Les Fusées-Sondes De Sud-Aviation
Les fusées-sondes de Sud-Aviation Jean-Jacques Serra Commission Histoire de la 3AF Origines : Centre national d'études des télécommunications (CNET) • Loi du 4 mai 1944, validée le 29 janvier 1945 • Demandes d'études - ministères (Guerre, Air, Marine), - Radiodiffusion française, - Comité d’action scientifique de la Défense nationale,... • Etudes sur la propagation radioélectrique plusieurs départements (Tubes et hyperfréquence, Transmission, Laboratoire national de radioélectricité) • Recherches sur la troposphère et sur l’ionosphère Programme spatial du CNET lancé en 1957 selon deux directions : • participation au lancement de fusées-sondes pour l’exploration de la haute atmosphère • traitement scientifique des données fournies par les signaux émis par les satellites artificiels Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 2 Contexte : Fusées-sondes existantes Fusées du CASDN pour l'AGI : • Véronique AGI : dérivée des Véronique N et NA (1952-1954) 60 kg à 210 km d'altitude • Monica IV et V : dérivées des Monica I à III (1955-1956) 15 kg à 80 km ou 140 km d'altitude Fusées de l'ONERA utilisées par le CEA : • Daniel : dérivé d'Ardaltex (1957-1959) 15 kg à 125 km d'altitude • Antarès : dérivé de l'engin d'essais de rentrée (1959-1961) 35 kg à 280 km d'altitude Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 3 Définition des besoins du CNET Envoi d'une charge utile de 32 kg à 80 km, 120 km, 400 km et 1000 km d'altitude • fusées commandées à Sud Aviation • unité mobile construite -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
USA Space Debris Environment, Operations, and Research Updates
National Aeronautics and Space Administration USA Space Debris Environment, Operations, and Research Updates J.-C. Liou, PhD Chief Scientist for Orbital Debris National Aeronautics and Space Administration U.S.A. 53 rd Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space, United Nations 15-26 February 2016 National Aeronautics and Space Administration Presentation Outline • Earth Satellite Population • Space Missions in 2014 • Satellite Fragmentations • Collision Avoidance Maneuvers • Satellite Reentries • 2015 IADC Meeting and MCAT 2 • National Aeronautics Nationaland Aeronautics Space Administration Number of Objects slightly in 2015. Earth increased objectsorbitin numberCatalog,toU.S. theSatellite Accordingthe 10000 12000 14000 16000 18000 2000 4000 6000 8000 Evolution of the Cataloged Satellite Population Satellite Cataloged the of Evolution 0 1957 1959 1961 1963 Rocket Bodies Mission-related Debris Spacecraft FragmentationDebris TotalObjects 1965 1967 1969 1971 1973 1975 1977 1979 Collision of Cosmos and 2251 Iridium 33 1981 1983 3 1985 1987 Destruction of Fengyun-1C 1989 1991 1993 1995 1997 1999 of 10 cm and larger andcm larger 10 of 2001 2003 2005 2007 2009 2011 2013 2015 • National Aeronautics Nationaland Aeronautics Space Administration 7000 metric metric in2015. tons7000 toorbit in Earth incre continued mass Thematerial Mass in Near-Earth Space Continued to Increase to Continued Space Near-Earth in Mass Mass in Orbit (millions of kg) 0 1 2 3 4 5 6 7 8 1957 1959 1961 1963 1965 Mission-related Debris FragmentationDebris Rocket Bodies Spacecraft TotalObjects 1967 1969 1971 1973 1975 1977 1979 1981 1983 4 1985 1987 1989 1991 1993 1995 1997 1999 and exceeded ase 2001 2003 2005 2007 2009 2011 2013 2015 National Aeronautics and Space Administration World-Wide Space Activity in 2015 • A total of 83 space launches placed more than 200 spacecraft into Earth orbits during 2015, following the trend of increase over the past decade. -
N.7 1 24336 April 18, 1971
NATIONAL MRONAUTKS AND SPACE ADMINISRATlON (m)w-4155 WASHINGTON, D x .mi46 TEIS: (a)963-6925 - ma ac * LEASE: SUNDAY N.7 1 24336 April 18, 1971 . (ACCMSION NUMB^) (THRU) e-3 37) (NASA CR OR TMX OR AD NUMBER) (CATEGORY) The third spacecraft in a joint Italian-United States cooperative space program is scheduled to be launched by a four-stage Scout rocket from an Italian platform in the Indian Ocean three miles off the coast of Kenya, Africa, no earlier than April 24. Called San Marco-f, the 360-pound (164 Kilogram) scientific spacecraft, built in Italy, carries three specially- designed icstruments -- one Italian and two U.S. -- to - - study the environment of the upper atmosphere in the equa- torial region. The orbit planned for San Marc3-C is equatorial, inclined only three degrees, with an apogee of about 500 statute miles (800 Kilometers), and a perigee of 130 statute miles (214 Km). It will circle the Earth once every 95 minutes. The launch- ing will be conducted ,by an Italian crew. -2- The San Marco program is Jointly managed by the Centro Ricerche Aerospaziali dellv Universita Degli Studi di Roma (Aerospace Research Center of the University of Rome)--CRA-- of Italy and the National Aeronautics and Space Administration's Goddard Space Flight Center, Greenbelt, MD. Under terms of the agreement signed in Nov. 1967, responsibilities for the program were divided as follows: Italy designed and built the spacecraft, integrated flight experiments and will conduct launch operations. The U.S,, under the agreement, has provided the Scout launch rocket, two experiments, technical consultation, launch crew train- ing.