Study of Autonomous Capture and Detumble of Non-Cooperative Target by a Free-Flying Space Manipulator Using an Air- Bearing Platform
Total Page:16
File Type:pdf, Size:1020Kb
STUDY OF AUTONOMOUS CAPTURE AND DETUMBLE OF NON-COOPERATIVE TARGET BY A FREE-FLYING SPACE MANIPULATOR USING AN AIR- BEARING PLATFORM Lucas Santaguida A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Applied Science Graduate Program in Mechanical Engineering York University Toronto, Ontario June 2020 © LUCAS SANTAGUIDA, 2020 Abstract This thesis developed a 3-DOF satellite simulator with an attached 3-DOF manipulator to capture and detumble a target satellite simulator. Existing systems are heavily dependent on external systems to compute the position and orientation of the chaser and target satellite simulators. Using external sensors and high-power computers allows their systems to have high accuracy and high sampling frequencies. This approach is not reflective of the challenges faced by an on-orbit servicing spacecraft as all positioning of the space vehicle is computed on-board. In addition, their systems use the same external sensors to determine the position and orientation of the target simulator and transmit it to the chaser. A true on-orbit servicing vehicle would need to sense and compute the target simulators position and orientation relative to itself. The simulator developed in this thesis addresses these issues by computing its own position using a star-tracking system and computes the relative position and orientation of the target simulator using a monocular camera. The simulator was developed to act as a testbed for on-orbit servicing technologies. Different sensors, path planning and control algorithms can be implemented to test their effectiveness before implementation on a servicing vehicle. To demonstrate this, a PD ii controller as well as an adaptive controller were implemented. Fuzzy logic was used to perform gain scheduling on the PD controller to improve its performance. iii Acknowledgements I would like to express my sincere gratitude to my supervisor, Professor Zheng Hong Zhu for his guidance and continuous support throughout my thesis research. I would also like to thank my family for believing in me and supporting me through the difficult times. iv Table of Contents ABSTRACT ............................................................................................................... II ACKNOWLEDGEMENTS .......................................................................................... IV TABLE OF CONTENTS ............................................................................................. V LIST OF TABLES .................................................................................................... VII LIST OF FIGURES ................................................................................................ VIII SYMBOLS AND CONVENTIONS ............................................................................. XVI List of Symbols ...................................................................................... xvi List of Abbreviations .............................................................................. xx CHAPTER 1 INTRODUCTION AND JUSTIFICATION ............................................... 1 1.1 Background of On-Orbit Servicing Vehicles ................................... 1 1.2 Justification of the Research ...........................................................11 1.3 Limitations of Existing Approaches .............................................. 26 1.4 Objectives of the Research ............................................................ 27 1.5 Method of Approach ...................................................................... 28 1.6 Layout of Thesis ............................................................................ 30 CHAPTER 2 LITERATURE REVIEW .................................................................... 32 2.1 Ground Based Experimentation and Verification .......................... 32 v 2.2 Air-Bearing Simulators with Robotic Manipulators ...................... 35 CHAPTER 3 DEVELOPMENT OF EXPERIMENTAL FACILITY .............................. 42 3.1 Testbed Overview .......................................................................... 42 3.2 Instrumentation and Measurement ................................................. 57 3.3 Simulator Software ........................................................................ 70 CHAPTER 4 CONTROL STRATEGIES .................................................................. 91 4.1 Control Strategies .......................................................................... 91 4.2 PD Control Strategy ....................................................................... 92 4.3 Adaptive Control .......................................................................... 107 CHAPTER 5 SIMULATION SOFTWARE DEVELOPMENT AND TUNING ............... 119 5.1 Simulation Implementation ...........................................................119 5.2 PD Controller Simulink Software ................................................ 121 5.3 Adaptive Control Simulation Software........................................ 137 CHAPTER 6 CAPTURE RESULTS ....................................................................... 140 6.1 PD Controller Capture Results .................................................... 140 6.2 Improved Adaptive Controller Comparison ................................ 152 CHAPTER 7 CONCLUSIONS AND FUTURE WORK ............................................ 160 7.1 General Conclusions .................................................................... 160 7.2 Contributions of Thesis Work ...................................................... 163 7.3 Future Work ................................................................................. 169 REFERENCES ....................................................................................................... 183 vi List of Tables Table 1.1 On-orbit robotic mission data.............................................................. 9 Table 3.1 Designed manipulator mass and length.............................................. 49 Table 3.2 Mapping of Arduino pins to the corresponding manipulator joints ... 55 Table 3.3 Thruster mapping for the chaser simulator ........................................ 89 Table 4.1 Routh table to determine the stability of the PD controller ............... 96 Table 4.2 Routh table to determine the stability of the P controller ................ 105 Table 4.3 Datasheet values for Picosatellite Reaction wheel RW-0.01 ........... 105 Table 4.4 Sample calculation of weighted summed from fuzzy logic gain scheduling .......................................................................................................... 114 Table 6.1 Adaptive and PD Result Comparison .............................................. 158 vii List of Figures Figure 1.1 Illustration of RemoveDEBRIS using a net to capture a target [6]. ... 2 Figure 1.2 Illustration of base spacecraft with a robotic manipulator. ................ 4 Figure 1.3 ETS-VII simulation created by Tohoku University [9]. ..................... 6 Figure 1.4 General model for a space robot with a single manipulator [49,50]. 14 Figure 1.5 Illustration of the transfer of linear momentum to the base spacecraft. .......................................................................................................... 16 Figure 1.6 Illustration of the transfer of angular momentum about the CM of free-floating system. ............................................................................................. 17 Figure 1.7 Illustration of robotic manipulator workspace [51]. ........................ 18 Figure 1.8 Depiction of internal kinematic singularity [51].............................. 19 Figure 1.9 Far-range approach, using orbital mechanics. .................................. 20 Figure 1.10 Fly-around and visual inspection. ................................................... 21 Figure 1.11 Final approach and rendezvous....................................................... 22 Figure 1.12 Visual servo tracking, course manipulation and capture. ............... 23 Figure 1.13 Impact dampening and motion suppression.................................... 24 Figure 1.14 Target berthing. ............................................................................... 25 Figure 1.15 Orbital unit exchange and refueling................................................ 25 Figure 1.16 More dexterous manipulation. ........................................................ 26 Figure 1.17 Outline of approach methodology. ................................................. 30 Figure 2.1 NASA Neutral Buoyancy Simulator - Solar Max Testing [72]. ....... 33 viii Figure 2.2 Industrial robotic manipulators [49]. ............................................... 34 Figure 2.3 Planar air-bearing microgravity simulator [69]. .............................. 35 Figure 2.4 The Polish Academy of Sciences simulator [71]. ............................. 36 Figure 2.5 POSEIDYN satellite simulator [73]. ................................................ 37 Figure 2.6 PINOCCHIO air-bearing simulator [76]. ......................................... 38 Figure 2.7 NTUA air-bearing planar simulator robot [77,78]. ........................... 39 Figure 2.8 SPOT facility with two air-bearing simulators [79]. ........................ 40 Figure 3.1 Granite table support and adjustment points..................................... 43 Figure 3.2 Components of the base simulator. ..................................................