The Astronews June 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring 2008 (PDF)
SKYWARNEWS National Weather Service State College, PA Spring/Summer 2008 “Working Together To Save Lives” The Cooperative Observers meteorological data in near real-time, to support forecast, warning and other public – Creators of Our service programs of the National Weather Country’s Weather History Service. By Victor Cruz, Observation Program Volunteers in the Cooperative Program are Leader trained by National Weather Service personnel and receive the equipment to And so, my fellow Americans: ask not perform their duties. In Central what your country can do for you—ask Pennsylvania, the oldest and longest what you can do for your country. The continuous Cooperative Program is located aforementioned sentence was uttered by in Lancaster County. The City of Lancaster President John F. Kennedy during his Filter Plant has been a cooperative weather Inaugural Address on January 20, 1961. site since May 01, 1887. Our newest However, long before President Kennedy Cooperative Observer is in Chandler’s had spoken those words, the Cooperative Valley, which was established on June 19, Weather Observer Program had been in 2004. Approximately 115 cooperative full swing, since its creation in 1890 under observers help to maintain the Cooperative the Organic Act. Observer Program in Central Pennsylvania. The National Weather Service (NWS) Everyday more than 12,000 weather Cooperative Observer Program (COOP) is volunteers take cooperative observations truly the Nation's weather and climate on farms, at homes in urban and suburban observing network of, by and for the areas, National Parks, seashores, and people. mountaintops. The data they collect are an invaluable measurement of atmospheric The basic equipment for most new Coop conditions where people live, work and Stations is a Standard Rain Gage, play. -
Back to the the Future? 07> Probing the Kuiper Belt
SpaceFlight A British Interplanetary Society publication Volume 62 No.7 July 2020 £5.25 SPACE PLANES: back to the the future? 07> Probing the Kuiper Belt 634089 The man behind the ISS 770038 Remembering Dr Fred Singer 9 CONTENTS Features 16 Multiple stations pledge We look at a critical assessment of the way science is conducted at the International Space Station and finds it wanting. 18 The man behind the ISS 16 The Editor reflects on the life of recently Letter from the Editor deceased Jim Beggs, the NASA Administrator for whom the building of the ISS was his We are particularly pleased this supreme achievement. month to have two features which cover the spectrum of 22 Why don’t we just wing it? astronautical activities. Nick Spall Nick Spall FBIS examines the balance between gives us his critical assessment of winged lifting vehicles and semi-ballistic both winged and blunt-body re-entry vehicles for human space capsules, arguing that the former have been flight and Alan Stern reports on his grossly overlooked. research at the very edge of the 26 Parallels with Apollo 18 connected solar system – the Kuiper Belt. David Baker looks beyond the initial return to the We think of the internet and Moon by astronauts and examines the plan for a how it helps us communicate and sustained presence on the lunar surface. stay in touch, especially in these times of difficulty. But the fact that 28 Probing further in the Kuiper Belt in less than a lifetime we have Alan Stern provides another update on the gone from a tiny bleeping ball in pioneering work of New Horizons. -
NASA TV Schedule for Web (Week of 6-22-2020).Xlsx
NASA TV Daily Program Schedule Monday - 6/22/2020 Eastern Daylight Time 12 a.m. Way Station to Space: The History of Stennis Space Center 12 a.m. 12:30 a.m. Preparing America for Deep Space (Ep.2) 12:30 a.m. 1 a.m. The Final Shuttle Mission 1 a.m. 1:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 1:30 a.m. 2 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 2 a.m. 2:30 a.m. Space for Women 2:30 a.m. 3 a.m. NASA EDGE - Robotics 3 a.m. 3:30 a.m. No Small Steps 3:30 a.m. 4 a.m. The Time of Apollo 4 a.m. 4:30 a.m. Space Shuttle Era (Ep.3) 4:30 a.m. 5 a.m. KORUS-AQ: Chapter 3/4 5 a.m. 5:30 a.m. Exploration of the Planets (1971) 5:30 a.m. 6 a.m. NASA X - SAGE 3 Monitoring Earths Ozone Layer 6 a.m. 6:30 a.m. Airborne Tropical Tropopause Experiment (Ep.2) 6:30 a.m. 7 a.m. NASA EDGE - Robotics 7 a.m. 7:30 a.m. ISS Benefits for Humanity (Ep.2) 7:30 a.m. 8 a.m. The Time of Apollo 8 a.m. 8:30 a.m. Space Shuttle Era (Ep.3) 8:30 a.m. 9 a.m. KORUS-AQ: Chapter 3/4 9 a.m. 9:30 a.m. Way Station to Space: The History of Stennis Space Center 9:30 a.m. -
Meteor Showers # 11.Pptx
20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Expedition 63
National Aeronautics and Space Administration INTERNATIONAL 20 Years on the International Space Station SPACE STATION EXPEDITION 63 Soyuz MS-16 Launch: April 9, 2020 Landing: October 2020 CHRIS CASSIDY (NASA) Commander Born: Salem Massachusetts Interests: Traveling, biking, camping, snow skiing, weight lifting, running Spaceflights: STS-127, Exp 35/36 Bio: https://go.nasa.gov/2NsLd0s Twitter: @Astro_SEAL ANATOLY IVANISHIN (Roscosmos) Flight Engineer Born: Irkutsk, Soviet Union Spaceflights: Exp 29/30, Exp 48/49 Bio: https://go.nasa.gov/2uy7DqK IVAN VAGNER (Roscosmos) Flight Engineer Born: Severoonezhsk, Russia Spaceflights: First flight Bio: https://go.nasa.gov/2CgZD1h Twitter: @ivan_mks63 EXPEDITION Expedition 63 began in April 2020 and ends in October 2020. This expedition will include research investigations and technology demonstrations not possible on Earth to advance scientific knowledge of Earth, space, physical and biological sciences. Stay up to date with the mission at the following web page: 63 https://www.nasa.gov/mission_pages/station/expeditions/expedition63/index.html During Expedition 63, scientists will collect standardized data from crew members to continue expanding our understanding of how human physiology responds to long-duration life in microgravity, and will test life support technologies that will be vital to our continued exploration of deep space. Follow the latest ISS Research and Technology news at: www.nasa.gov/stationresearchnews Capillary Driven Microfluidics s-Flame On long space missions such as flights to Mars, crew members need to be able to diagnose The Advanced Combustion via Microgravity Experiments (ACME) project is a series of independent studies of flames and treat anyone who gets sick. Many medical diagnostic devices function by moving liquids produced by burning gas. -
David Levy's Guide to the Night Sky Da
Cambridge University Press 0521797535 - David Levy’s Guide to the Night Sky David H. Levy Index More information INDEX AAVSO, 200–201, 331, 332 binoculars, 57–59 absolute magnitudes, 36 Bobrovnikoff method, estimating comet Adams, John Couch, 156 brightness, 178 aetheria darkening, 138 Bode, Johann, 163 Alcock, George, 44, 185 Bode’s Law, 163–165 Algol, 325 Brahe, Tycho, 81 aligning, 67 Brasch, Klaus, 126 Alpha Capricornids, 47 Brashear, John, 60 altazimuth, 62, 65 bright nebulae, 232–233 altitude, 67 Brooks, William, 182 Amalthea, 111 Burnham, Sherbourne Wesley, 193 amateur astronomy, introduced, xvii, xviii Andromedids, 48, 49, 68 Callisto, 111, 119, 121 Antoniadi, Eugenios, 112 Carrington, Christopher, 103 aphelic oppositions, 134 Cassini spacecraft, 130 aphelion, 134 Cassini, Giovanni, 81, 124 apochromat, 60 Cassini’s Division, 124, 125 apparent magnitude, 36 CCD technology, 275–280 apparitions, of comets, 134, 135 CCDs, for astrometry, 283 Arago, Francois, 156 Celestial Police, 163–164 Ariel, 159 celestial equator, 8 ashen light, Venus, 152 Central Bureau for Astronomical Association of Lunar and Planetary Telegrams,120, 121, 186–187, 280 Observers, 331, 332 Challis, James, 156 Asteroids, 163–172 Chapman, Clark, 170 naming of, 165–166 Chaucer, Geoffrey, 318 Astronomical League, 333 chromosphere, 293 astrophotography, 262 Clark, Alvin, 60 Aurigids, 46 Clavius, Christopher, 82 Aurora, 28–33 Collins, Peter, 158, 217 Auroral Data Center in the US, 29 Coma Berenicids, 50 averted vision, 41 comets, 172–189, 294 azimuth, 67 Arend–Roland, 43 Biela, 49, 68 Baker, Lonny, xxii Bradfield, 69 Barnard, E. E. 111, 181–182 Denning–Fujikawa, 181 Beyer method, estimating comet brightness, Encke, 49, 175 179 Giacobini–Zinner, 48 Beyond the Observatory (Shapley), 35 Halley, 44, 46, 48, 55, 78, 175, 225 big bang, 65 Hartley–IRAS, 175 339 © Cambridge University Press www.cambridge.org Cambridge University Press 0521797535 - David Levy’s Guide to the Night Sky David H. -
NASA TV Schedule for Web (Week of 5-25-2020)(1).Xlsx
NASA TV Daily Program Schedule Monday - 5/25/2020 Eastern Daylight Time 12 a.m. 300 Feet to the Moon 12 a.m. 12:30 a.m. NASA X - Airspace Technology Demonstration Project 12:30 a.m. 1 a.m. AirBorne Tropical Tropopause Experiment (Ep.1) 1 a.m. 1:30 a.m. Space Station Stories 1:30 a.m. 2 a.m. 2 a.m. NASA Explorers - Cryosphere 2:30 a.m. 2:30 a.m. 3 a.m. America in Space - The First Decade 3 a.m. 3:30 a.m. Operation IceBride 3:30 a.m. 4 a.m. NASA Science Live: On Ice 4 a.m. 4:30 a.m. Preparing America for Deep Space (Ep.1) 4:30 a.m. 5 a.m. NASA X - Making Skies Safe for Unmanned Aircraft 5 a.m. 5:30 a.m. Automatic Collision Avoidance Technology 5:30 a.m. 6 a.m. 300 Feet to the Moon 6 a.m. 6:30 a.m. 6:30 a.m. 7 a.m. 7 a.m. Coverage of the Rendezvous and Capture of the JAXA/HTV-9 Cargo Ship at the 7:30 a.m. International Space Station (Capture scheduled at 8:15 a.m. EDT) 7:30 a.m. 8 a.m. (Starts at 6:45 a.m. EDT) 8 a.m. 8:30 a.m. 8:30 a.m. 9 a.m. 9 a.m. 9:30 a.m. 9:30 a.m. Coverage of the Installation of the JAXA/HTV-9 Cargo Ship to the International Space 10 a.m. -
Study of Autonomous Capture and Detumble of Non-Cooperative Target by a Free-Flying Space Manipulator Using an Air- Bearing Platform
STUDY OF AUTONOMOUS CAPTURE AND DETUMBLE OF NON-COOPERATIVE TARGET BY A FREE-FLYING SPACE MANIPULATOR USING AN AIR- BEARING PLATFORM Lucas Santaguida A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Applied Science Graduate Program in Mechanical Engineering York University Toronto, Ontario June 2020 © LUCAS SANTAGUIDA, 2020 Abstract This thesis developed a 3-DOF satellite simulator with an attached 3-DOF manipulator to capture and detumble a target satellite simulator. Existing systems are heavily dependent on external systems to compute the position and orientation of the chaser and target satellite simulators. Using external sensors and high-power computers allows their systems to have high accuracy and high sampling frequencies. This approach is not reflective of the challenges faced by an on-orbit servicing spacecraft as all positioning of the space vehicle is computed on-board. In addition, their systems use the same external sensors to determine the position and orientation of the target simulator and transmit it to the chaser. A true on-orbit servicing vehicle would need to sense and compute the target simulators position and orientation relative to itself. The simulator developed in this thesis addresses these issues by computing its own position using a star-tracking system and computes the relative position and orientation of the target simulator using a monocular camera. The simulator was developed to act as a testbed for on-orbit servicing technologies. Different sensors, path planning and control algorithms can be implemented to test their effectiveness before implementation on a servicing vehicle. -
Expedition 63
National Aeronautics and Space Administration International Space Station [MISSION SUMMARY] began in April 2020 and ends in October 2020. This expedition EXPEDITION 63 will include research investigations focused on biology, Earth science, human research, physical sciences and technology development, providing the foundation for continuing human spaceflight beyond low-Earth orbit to the Moon and Mars. THE CREW: Chris Cassidy (NASA) Anatoly Ivanishin (Roscosmos) Ivan Vagner (Roscosmos) Commander Flight Engineer Flight Engineer Born: Salem, Massachusetts Born: Irkutsk, Russia Born: Severoonezhsk, Russia Spaceflights: STS-127, Exp. 35/36 Spaceflights: Exp. 29/30, Exp. 48/49 Spaceflights: First flight Bio: https://go.nasa.gov/2NsLd0s Bio: https://go.nasa.gov/2uy7DqK Bio: https://go.nasa.gov/3e8efhq Instagram: @Astro_SEAL Instagram: @ivan_mks63 THE SCIENCE: During Expedition 63, scientists will collect standardized data from crew What are some members to continue expanding our understanding of how human physiology investigations responds to long-duration life in microgravity, and will test life support the crew is technologies that will be vital to our continued exploration of deep space. operating? International Mission Space Station Summary ■ ACE-T-Ellipsoids across the duration of the International Space Station Program that This investigation creates three-dimensional colloids, small particles helps characterize the risks of living in space and how humans suspended within a fluid medium, and uses temperature to control the adapt to those risks. Scientists can use the data to monitor the density and behavior of the particles. Colloids can organize into various effectiveness of countermeasures and interpret astronaut health and structures, called self-assembled colloidal structures, which could enable performance outcomes, as well as to support future human research 3D printing of replacement parts and repair of facilities on future long- on planetary missions. -
NASA Television Schedule (Week of April 6Th) Updated.Xlsx
NASA TV Daily Program Schedule Monday All Times Eastern Time 12 a.m. 300 Feet to the Moon 12:30 a.m. NASA X - Airspace Technology Demonstration Project 1 a.m. Airborne Tropical Tropopause Experiment (Ep.1) 1:30 a.m. Space Station Stories 2 a.m. ISS Benefits for Humanity (Ep.1) 2:30 a.m. NASA Explorers - Cryosphere 3 a.m. 3:30 a.m. Operation IceBriDe 4 a.m. KORUS-AQ: Chapter 1/2 4:30 a.m. Preparing America for Deep Space (Ep.1) 5 a.m. Space Shuttle Era (Ep.1) 5:30 a.m. Automatic Collision AvoiDance Technology 6 a.m. BuilDing Curiosity 6:30 a.m. NASA EDGE - 3D Printing 7 a.m. STEM in 30 - Fly Girls: Women in Aerospace 7:30 a.m. 300 Feet to the Moon 8 a.m. NASA X - Airspace Technology Demonstration Project 8:30 a.m. Airborne Tropical Tropopause Experiment (Ep.1) 9 a.m. Space Station Stories 9:30 a.m. ISS Benefits for Humanity (Ep.1) 10 a.m. NASA Explorers - Cryosphere 10:30 a.m. 11 a.m. Space Shuttle Era (Ep.4) 11:30 a.m. Astrobiology in the FielD 12 p.m. NASA EDGE - 3D Printing 12:30 p.m. STEM in 30 - Fly Girls: Women in Aerospace 1 p.m. Operation IceBriDe 1:30 p.m. KORUS-AQ: Chapter 1/2 2 p.m. Preparing America for Deep Space (Ep.1) 2:30 p.m. Space Shuttle Era (Ep.1) 3 p.m. Automatic Collision AvoiDance Technology 3:30 p.m. -
MSS30-2009.Pdf
MSS-120 (2008 年 10 月 5 日) ふたご座流星群の等級別出現数(VMDB より) 内山茂男 1. VMDB とは * IMO(国際流星機構)の収集した眼視観測データ * Visual Meteor Data Base (http://www.imo.net/data/visual) * Rate data と Mag data がある。基本的に Mag data を使用。ただし、Mag data には Teff と F が記 載されていないため、Rate data との照合が必要。 2. データ使用条件 (1) 月明かりの影響が少ない年(1993、1996、1998、1999、2001、2002、2004、2007 年) (2) 輻射点高度 25 度以上 (3) 視野遮蔽係数 F が 1.4 未満(雲量 2.9 未満) (4) 観測区分時間 2 時間以内 (5) 個人補正(最微星補正)の絶対値が 1.0 等未満 (6) 最微星 5.0 等以上 かつ 個人補正後の最微星 5.0 等以上 3. 使用データ量 年 1993 1996 1998 1999 2001 2002 2004 2007 合計 観測時間(hr) 58.8 124.9 106.5 170.6 160.1 107.0 317.7 252.9 1298.3 群流星数 4646 7206 5309 8812 8577 5473 20727 12492 73242 等級 ≦-5 -4 -3 -2 -1 0 1 2 3 4 5 流星数 165 244.5 596.5 1545.5 3377.5 6763.5 10519 14808 16651 12194 4986.5 4. 全ふたご群 ZHR 5. ローレンツ曲線 2 Wh ZHR = ZHRmax × 2 2 (T − Tmax ) +Wh 極大値 ZHRmax、極大太陽黄経 Tmax、半値半幅 Wh(極 大前 Wa と極大後 Wd)の値は、最小二乗法(誤差で 重み)で決定。 ※ 各等級の極大時刻はピークだけでなく全体の出現 状況から決定 6. 等級別 ZHR (ZHRm) 集計結果 (※ ピンクのラインは全 ZHR と同じ形で各 ZHRm の極大値に合わせたもの) Ls,max = 262.33 – 0.055・M (1 等級あたり 1.3 時間変化) Wa = 0.956 + 0.088・M Wd = 0.390 + 0.029・M FWHM= 1.347 + 0.119・M (FWHM は 1 等級あたり 2.8 時間変化) MSS-121用 観測結果 ペルセウス群輻射点拡大撮影 重野好彦 撮影日時 2008年8月11/12日 00時00分から03時32分(JST) 12/13日 00時30分から04時00分(JST) 観測地 新潟八海山 撮影機材 IIによる動画像(DV-AVI)撮影 高橋P型+ビクセンモードラ自動ガイド レンズ50mmF1.4 写野 20度×15度 撮影方向 ペルセウス座流星群輻射点 画像処理 ペルセウス群13流星(11/12)、12流星(12/13)をコンポジット 2008.08.11/12 2006.08.13/14 50mm F1.4 170mm F2.4 2008.08.12/13 50mm F1.4 !"#$%&' ()* +,-./012345 1.