Detection and Measurement of Micrometeoroids with LISA Pathfinder

Total Page:16

File Type:pdf, Size:1020Kb

Detection and Measurement of Micrometeoroids with LISA Pathfinder A&A 586, A107 (2016) Astronomy DOI: 10.1051/0004-6361/201527658 & c ESO 2016 Astrophysics Detection and measurement of micrometeoroids with LISA Pathfinder J. I. Thorpe1, C. Parvini1,2, and J. M. Trigo-Rodríguez3 1 Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA e-mail: [email protected] 2 Department of Aerospace Engineering, The George Washington University, Washington, DC 20052, USA 3 Meteorites, Minor Bodies and Planetary Sciences Group, Institute of Space Sciences (CSIC-IEEC), Campus UAB Bellaterra, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés Barcelona, Spain Received 28 October 2015 / Accepted 23 December 2015 ABSTRACT The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These par- ticles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 × 10−8 N s. We then estimate the rate of such impulses resulting from impacts of microme- teoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses >10−9 g during LPF’s roughly six-month science operations phase in a 5 × 105 km by 8 × 105 km Lissajous orbit around L1. In addition, we estimate the ability of LPF to charac- terize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individ- ual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1. Key words. meteorites, meteors, meteoroids – instrumentation: miscellaneous 1. Introduction Lissajous orbit around the first Sun-Earth (L1) lagrange point. LPF was launched on December 3rd, 2015 and will begin sci- Our current understanding of the interplanetary dust complex ence operations in early 2016 and continue for approximately six is informed by a number of measurement techniques including months with a possible extension of an additional six months. In photographic and visual meteors (Halliday et al. 1984; Hawkes this paper, we outline an approach for using LPF as an instru- 2007; Trigo-Rodriguez et al. 2008), radio meteors, atmospheric ment to detect and characterize interplanetary dust in the vicin- collections (Flynn 1994), observation of zodiacal light in thermal ity of L1. This technique does not require any modification to (Krick et al. 2012) and visual (Levasseur-Regourd & Dumont the hardware or operations of LPF and may provide an impor- 1980) wavelengths, in-situ penetration and ionization detectors tant new source of information to constrain models of the dust (Weidenschilling 1978; Zhang & Kessler 1995), and analysis complex. of microcraters in lunar samples (Allison & McDonnell 1982). The outline of the paper is as follows. In Sect. 2 we describe Additionally, NASA’s Stardust mission (Hörz et al. 2006)and the working principle of the LPF instrument and its application ESA’s Rosetta mission (Rotundi et al. 2015)havemadein-situ as a dust detection instrument. In Sect. 3 we make a simple es- measurements of the dust environments near the comets Wild 2 timate for the detection threshold of LPF as a function of trans- / and 67 Churyumov-Gerasimenko respectively. The combined ferred momentum using a simplified 1D model. In Sect. 4 we picture from all of these techniques, each with varying ability estimate the rates of events above this threshold and the total to detect and characterize various sub-populations of the dust number of likely events during the LPF mission. In Sect. 5 we complex, is used to constrain theoretical models that account for estimate the precision with which LPF will measure parameters the sources, sinks, and dynamics of the dust complex. of individual impacts such as momentum transferred and direc- The LISA Pathfinder (LPF) mission (Armano et al. 2015), tion of impact. In Sect. 6, we summarize our results and outline is a technology demonstration mission dedicated to validating likely avenues for refining the estimates made here. several key technologies for a future space-based observatory (Bender & Danzmann 1998; Jennrich 2011) of astrophysical gravitational waves (Einstein 1918; Bondi et al. 1959). Led by 2. Overview of technique the European Space Agency with contributions from NASA and a number of European research institutions, LPF consists of a Inside the LPF are two inertial sensor units each containing a single sciencecraft operating in a 5 × 105 km by 8 × 105 km test mass comprised of a 46 mm cube of Au-Pt alloy with a mass Article published by EDP Sciences A107, page 1 of 6 A&A 586, A107 (2016) 10-10 of 1.96 kg. During launch and cruise, these test masses are me- Thruster Inertial Sensor chanically supported by a lock mechanism, which is retracted 2 Total m Hz prior to beginning science operations leaving the test masses 2 4 s -12 freely-falling inside the inertial sensors with no mechanical con- kg 10 tacts. Each inertial sensor unit measures the position and attitude of its respective test mass relative to the LPF spacecraft in all six rigid-body kinematic degrees-of-freedom (DoFs) using a capaci- 10-14 tive sensing system. The inertial sensor unit can apply forces and torques to the test mass via electrostatic actuation. Additional in- formation is provided by a laser interferometer that measures a 10-16 three of DoFs (position, tip, and tilt) with higher precision and a star tracker which measures the three angular DoFs of the space- Equivalent Force Noise craft relative to a background inertial reference frame. A control 10-18 system converts the position and attitude measurements from the 10-4 10-3 10-2 10-1 100 two inertial sensors, the interferometer, and the star tracker into Fourier Frequency [ Hz] force and torque commands that are applied to the test masses Fig. 1. Power spectral density of equivalent spacecraft force noise in a and the spacecraft, the latter being actuated using a microthruster simplified one-dimensional model of LPF. system. The main purpose of the control system is to reduce exter- ≤ ≤ nal force disturbances on the test masses; low-disturbance ref- noise on the spacecraft in the measurement band 0.1mHz f erence masses are a key technology for LISA-like instruments. 100 mHz. The first is the noise of the microthruster system itself, A byproduct of this effort is an exquisite measurement of exter- which is characterized by a flat power spectral density with a nal force disturbances on the LPF spacecraft either through the level of −16 2 residual motion between the spacecraft and the test masses or in S th ≈ 10 N /Hz, (3) the applied control forces and torques. One such source of ex- ternal force disturbance is an impulse generated by an impact of The thruster noise dominates at low frequencies but is eclipsed a micrometeoroid or dust particle. In the following sections, we above a few mHz by the equivalent force noise of the inertial estimate the detection threshold and rate for such impact events. sensor. The inertial sensor noise is characterized by a flat dis- placement amplitude spectral density at a level of ∼2nm/Hz1/2. This can be converted to an equivalent force noise on the space- 3. Detection threshold craft by multiplying by the spacecraft mass (M = 422 kg) and taking two time derivatives. The resulting power spectral density The momentum transferred to the LPF spacecraft by an indi- of this equivalent spacecraft force noise from the inertial sensor vidual micrometeoroid impact will combine with stochastic dis- is given by turbances on the spacecraft from a number of sources such as −9 1/2 2 2 Solar radiation pressure, outgassing, and noise from the mi- S is ≈ (2 × 10 m/Hz ) · M · (2π f ) crothruster system. The measured momentum transfer will also −9 4 2 5 be effected by noise in the position sensing system and force = 1.1 × 10 · f N /Hz . (4) disturbances on the test masses. To simplify our estimate of the The individual and combined components of the spacecraft threshold at which LPF can detect an individual impact, we con- equivalent force noise are shown in Fig. 1. sider a simplified one-dimensional model in a linear DoF. We An impact by a micrometeoroid is modeled as an impulsive adopt the maximum-likelihood formalism, where the signal-to- τ P / force occurring at time and imparting a total momentum over noise ratio (S N) of an event is defined using a noise-weighted a characteristic timescale Δ. This can be written in the time and inner-product: frequency domains respectively as: ρ2 = F|F, (1) = P Θ − − Θ − − Δ F(t) Δ [ (t τ) (t τ )] , (5) where ρ is the S/N, F is the “waveform” of the force on the −2πif(τ+Δ/2) spacecraft resulting from the impact and ...| ..
Recommended publications
  • Spring 2008 (PDF)
    SKYWARNEWS National Weather Service State College, PA Spring/Summer 2008 “Working Together To Save Lives” The Cooperative Observers meteorological data in near real-time, to support forecast, warning and other public – Creators of Our service programs of the National Weather Country’s Weather History Service. By Victor Cruz, Observation Program Volunteers in the Cooperative Program are Leader trained by National Weather Service personnel and receive the equipment to And so, my fellow Americans: ask not perform their duties. In Central what your country can do for you—ask Pennsylvania, the oldest and longest what you can do for your country. The continuous Cooperative Program is located aforementioned sentence was uttered by in Lancaster County. The City of Lancaster President John F. Kennedy during his Filter Plant has been a cooperative weather Inaugural Address on January 20, 1961. site since May 01, 1887. Our newest However, long before President Kennedy Cooperative Observer is in Chandler’s had spoken those words, the Cooperative Valley, which was established on June 19, Weather Observer Program had been in 2004. Approximately 115 cooperative full swing, since its creation in 1890 under observers help to maintain the Cooperative the Organic Act. Observer Program in Central Pennsylvania. The National Weather Service (NWS) Everyday more than 12,000 weather Cooperative Observer Program (COOP) is volunteers take cooperative observations truly the Nation's weather and climate on farms, at homes in urban and suburban observing network of, by and for the areas, National Parks, seashores, and people. mountaintops. The data they collect are an invaluable measurement of atmospheric The basic equipment for most new Coop conditions where people live, work and Stations is a Standard Rain Gage, play.
    [Show full text]
  • Survival of Refractory Presolar Grain Analogs During Stardust‐
    Meteoritics & Planetary Science 50, Nr 8, 1378–1391 (2015) doi: 10.1111/maps.12474 Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction T. K. CROAT1,*, C. FLOSS1, B. A. HAAS1, M. J. BURCHELL2, and A. T. KEARSLEY2,3 1Laboratory for Space Sciences and Department of Physics, Washington University, St. Louis, Missouri 63130, USA 2Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK 3Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK *Corresponding author. E-mail: [email protected] (Received 02 February 2015; revision accepted 04 May 2015) Abstract–We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km sÀ1 with a light-gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less-refractory Si3N4 grains. In small (<2 lm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 lm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation.
    [Show full text]
  • Mining Outer Space: Who Owns the Asteroids?
    G THE B IN EN V C R H E S A N 8 8 D 8 B 1 AR SINCE WWW. NYLJ.COM VOLUME 254—NO. 19 WEDNESDAY, JULY 29, 2015 Outside Counsel Expert Analysis Mining Outer Space: Who Owns the Asteroids? ver the last two years, U.S. outer space. Most relate to navigation and business and policy makers By space flight—reflecting the aspirations have focused afresh on the Timothy G. (and limits) of the era. Two, however, commercial possibilities of the Nelson are potentially relevant: Article I of the asteroids—the solar system’s OST states that “[t]he exploration and use Ominor planetary objects. Most of these of outer space, including the moon and are located between Mars and Jupiter, other celestial bodies, shall be carried out while some are closer to Earth. Some The ‘Law’ of Space for the benefit and in the interests of all have large deposits of precious metals countries, irrespective of their degree of and other potentially valuable substanc- Until the Sputnik launch in the 1950s, economic or scientific development, and es.1 In the last few years, some private few steps had been taken in defining the shall be the province of all mankind.”8 operators have announced plans to mine legal rules relating to outer space. Indeed, Article II states that “[o]uter space, includ- them commercially, a concept that, until the only circumstance in which “owner- ing the moon and other celestial bodies, now, has been exclusively the realm of ship of space minerals” was relevant was is not subject to national appropriation science fiction.2 if someone was fortunate (or unfortunate) by claim of sovereignty, by means of use In apparent response to these initiatives, or occupation, or by any other means.”9 the House of Representatives recently The legal status of mining in Together, these articles mean that passed the “Space Resource Exploration space cannot be subdivided into national and Utilization Act of 2015,” H.R.
    [Show full text]
  • Meteors, Meteoroids, and Meteorites by Cindy Grigg
    Meteors, Meteoroids, and Meteorites By Cindy Grigg 1 Have you ever seen a falling star? You really saw a meteor. A meteor is a bright streak of light we see in the sky. It only lasts for a few seconds. People often call meteors shooting stars or falling stars because they look like stars falling from the sky. People sometimes call the brightest meteors fireballs. While it is in space, it is called a meteoroid. Meteoroids that reach the Earth are called meteorites. 2 A meteor appears when a chunk of metallic or stony matter called a meteoroid enters the Earth's atmosphere from outer space. Air friction heats the meteoroid so that it glows. It creates a shining trail of gases and melted meteoroid particles. Most meteoroids burn up before reaching the Earth. Some leave a trail that lasts several seconds. Millions of meteors occur in the Earth's atmosphere every day. Most meteoroids that cause meteors are about the size of a pebble. 3 Meteoroids travel around the sun in different orbits and at different speeds. The fastest ones move at about 26 miles per second. The Earth travels at about 18 miles per second. So when meteoroids meet the Earth's atmosphere head-on, the combined speed may reach about 44 miles per second, or 264 miles per hour! 4 The Earth meets a number of clusters of tiny meteoroids at certain times every year. At these times, the sky seems filled with a shower of sparks. These clusters have orbits like comets and are believed to be pieces of comets.
    [Show full text]
  • Meteoroid Stream Formation Due to the Extraction of Space Resources from Asteroids
    Meteoroid Stream Formation Due to the Extraction of Space Resources from Asteroids Logan Fladeland(1), Aaron C. Boley(2), and Michael Byers(3) (1) UBC, Department of Physics and Astronomy, 6224 Agricultural Rd, Vancouver, BC V6T 1Z1 (Canada), [email protected] (2) UBC, Department of Physics and Astronomy, 6224 Agricultural Rd, Vancouver, BC V6T 1Z1 (Canada), [email protected] (3) UBC, Department of Political Science, 1866 Main Mall C425, Vancouver, BC V6T 1Z1 (Canada), [email protected] ABSTRACT Asteroid mining is not necessarily a distant prospect. Building on the earlier mission Hayabusa, two spacecraft (Hayabusa2 and OSIRIS-REx) have recently rendezvoused with near-Earth asteroids and will return samples to Earth. While there is significant science motivation for these missions, there are also resource interests. Space agencies and commercial entities are particularly interested in ices and water-bearing minerals that could be used to produce rocket fuel in deep space. The internationally coordinated roadmaps of major space agencies depend on utilizing the natural resources of such celestial bodies. Several companies have already created plans for intercepting and extracting water and minerals from near-Earth objects, as even a small asteroid could have high economic worth. The low surface gravity of asteroids could make the release of mining waste and the subsequent formation of debris streams a consequence of asteroid mining. Proposed strategies that would contain material during extraction could be inefficient or could still require the purposeful jettison of mining waste to avoid the need to manage unwanted mass. Since all early mining targets are expected to be near-Earth asteroids due to their orbital accessibility, these streams could be Earth-crossing and create risks for Earth and lunar satellite populations, as well as humans and equipment on the lunar surface.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Space Resources Roundtable II : November 8-10, 2000, Golden, Colorado
    SPACE RESOURCES RouNDTABLE II November 8-10, 2000 Colorado School of Mines Golden, Colorado LPI Contribution No. 1070 SPACE RESOURCES ROUNDTABLE II November 8-10, 2000 Golden, Colorado Sponsored by Colorado School of Mines Lunar and Planetary Institute National Aeronautics and Space Administration Steering Committee Joe Burris, WorldTradeNetwork.net David Criswell, University of Houston Michael B. Duke, Lunar and Planetary Institute Mike O'Neal, NASA Kennedy Space Center Sanders Rosenberg, InSpace Propulsion, Inc. Kevin Reed, Marconi, Inc. Jerry Sanders, NASA Johnson Space Center Frank Schowengerdt, Colorado School of Mines Bill Sharp, Colorado School of Mines LPI Contribution No. 1070 Compiled in 2000 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Matenal in this volume may be copied wnhout restraint for library, abstract service, education. or personal research purposes; however, republication of any paper or portion thereof requ1res the wriuen permission of the authors as well as the appropnate acknowledgment of this publication. Abstracts in this volume may be cited as Author A B. (2000) Title of abstract. In Space Resources Roundtable II. p x.x . LPI Contnbuuon No. 1070. Lunar and Planetary Institute. Houston. This repon is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No 1070 iii Preface This volume contains abstracts that have been accepted for presentation at the Space Resources Roundtable II, November 8-10, 2000.
    [Show full text]
  • High Survivability of Micrometeorites on Mars: Sites with Enhanced Availability of Limiting Nutrients
    RESEARCH ARTICLE High Survivability of Micrometeorites on Mars: Sites With 10.1029/2019JE006005 Enhanced Availability of Limiting Nutrients Key Points: Andrew G. Tomkins1 , Matthew J. Genge2,3 , Alastair W. Tait1,4 , Sarah L. Alkemade1, • Micrometeorites are predicted to be 1 1 5 far more abundant on Mars than on Andrew D. Langendam , Prudence P. Perry , and Siobhan A. Wilson Earth 1 2 • Micrometeorites are concentrated in School of Earth, Atmosphere and Environment, Melbourne, Victoria, Australia, Impact and Astromaterials Research the residue of aeolian sediment Centre, Department of Earth Science and Engineering, Imperial College London, London, UK, 3Department of removal, such as at bedrock cracks Mineralogy, The Natural History Museum, London, UK, 4Department of Biological and Environmental Sciences, and gravel accumulations University of Stirling, Scotland, UK, 5Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, • Micrometeorite accumulation sites are enriched in key nutrients for Alberta, Canada primitive microbes: reduced phosphorus, sulfur, and iron Abstract NASA's strategy in exploring Mars has been to follow the water, because water is essential for life, and it has been found that there are many locations where there was once liquid water on the surface. Now perhaps, to narrow down the search for life on a barren basalt‐dominated surface, there needs to be a Correspondence to: A. G. Tomkins, refocusing to a strategy of “follow the nutrients.” Here we model the entry of metallic micrometeoroids [email protected] through the Martian atmosphere, and investigate variations in micrometeorite abundance at an analogue site on the Nullarbor Plain in Australia, to determine where the common limiting nutrients available in Citation: these (e.g., P, S, Fe) become concentrated on the surface of Mars.
    [Show full text]
  • Meteor Showers # 11.Pptx
    20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha
    [Show full text]
  • Connection Between Micrometeorites and Wild 2 Particles: from Antarctic Snow to Cometary Ices
    Meteoritics & Planetary Science 44, Nr 10, 1643–1661 (2009) Abstract available online at http://meteoritics.org Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices E. DOBRIC√1,*, C. ENGRAND1, J. DUPRAT1, M. GOUNELLE2, H. LEROUX3, E. QUIRICO4, and J.-N. ROUZAUD5 1Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-Univ. Paris Sud, 91405 Orsay Campus, France 2Laboratoire de Minéralogie et de Cosmochimie, Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP52, 75005 Paris, France 3Laboratoire de Structure et Propriétés de l’Etat Solide, CNRS-Univ. des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, France 4Laboratoire de Planétologie de Grenoble, Univ. J. Fourier CNRS-INSU 38041 Grenoble Cedex 09, France 5Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, 75231 Paris Cedex 5, France *Corresponding author. E-mail: [email protected] (Received 17 March 2009; revision accepted 21 September 2009) Abstract–We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large-scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra-clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory.
    [Show full text]
  • 1 the Mass Spectrum Analyzer (MSA) for the Martian Moons Explorat
    In Situ Observations of Ions and Magnetic Field Around Phobos: The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) Mission Shoichiro Yokota ( [email protected] ) Osaka Univ. https://orcid.org/0000-0001-8851-9146 Naoki Terada Tohoku University Ayako Matsuoka Kyoto University: Kyoto Daigaku Naofumi Murata JAXA Yoshifumi Saito ISAS/JAXA Dominique Delcourt LPP-CNRS-Sorbonne Yoshifumi Futaana Swedish Institute of Space Physics Kanako Seki The University of Tokyo: Tokyo Daigaku Micah J Schaible Georgia Institute of Technology Kazushi Asamura ISAS/JAXA Satoshi Kasahara The University of Tokyo: Tokyo Daigaku Hiromu Nakagawa Tohoku University: Tohoku Daigaku Masaki N Nishino ISAS/JAXA Reiko Nomura ISAS/JAXA Kunihiro Keika The University of Tokyo: Tokyo Daigaku Yuki Harada Kyoto University: Kyoto Daigaku Shun Imajo Nagoya University: Nagoya Daigaku Full paper Keywords: Martian Moons eXploration (MMX), Phobos, Mars, mass spectrum analyzer, magnetometer Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-130696/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 In situ observations of ions and magnetic field around Phobos: 2 The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) 3 mission 4 Shoichiro Yokota1, Naoki Terada2, Ayako Matsuoka3, Naofumi Murata4, Yoshifumi 5 Saito5, Dominique Delcourt6, Yoshifumi Futaana7, Kanako Seki8, Micah J. Schaible9, 6 Kazushi Asamura5, Satoshi Kasahara8, Hiromu Nakagawa2, Masaki
    [Show full text]
  • Finegrained Precursors Dominate the Micrometeorite Flux
    Meteoritics & Planetary Science 47, Nr 4, 550–564 (2012) doi: 10.1111/j.1945-5100.2011.01292.x Fine-grained precursors dominate the micrometeorite flux Susan TAYLOR1*, Graciela MATRAJT2, and Yunbin GUAN3 1Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755–1290, USA 2University of Washington, Seattle, Washington 98105, USA 3Geological & Planetary Sciences MC 170-25, Caltech, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 15 May 2011; revision accepted 22 September 2011) Abstract–We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2–8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries.
    [Show full text]