The Contribution of Adolf Windaus

Total Page:16

File Type:pdf, Size:1020Kb

The Contribution of Adolf Windaus History of Nutrition The Discovery of Vitamin D: The Contribution of Adolf Windaus Downloaded from https://academic.oup.com/jn/article-abstract/134/6/1299/4688802 by Western University of Health Sciences Library user on 18 February 2020 George Wolf1 Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720-3104 The Nobel prize for chemistry for 1928 was awarded to so treated no longer had growth-promoting activity; the rats Adolf Windaus “for his studies on the constitution of the fed the treated butterfat developed xerophthalmia and died sterols and their connection with vitamins” (1), the first within 40–50 d. person to receive an award mentioning vitamins. What was The key experiment was performed by McCollum and his the contribution Windaus made to our knowledge of vitamins co-workers (8) in 1922, when they observed that heated, that deserved the highest scientific accolade? oxidized cod-liver oil could not prevent xerophthalmia but The vitamin in question was vitamin D. It had a long could cure rickets in the rats. “This shows that oxidation history before Windaus appeared on the scene. Rickets, the destroys fat-soluble A without destroying another substance bone disease caused by vitamin D deficiency, was known in which plays an important role in bone growth” (8). They antiquity and was described in detail by F. Glisson in 1650 (2). concluded that fat-soluble factor A consisted of 2 entities, one Many causes and cures for rickets had been proposed. Al- later called “vitamin A,” the other being the newly discovered though cod-liver oil had been used medicinally for a long time, antirickets factor. Because the water-soluble factors then dis- D. Scheutte (2) in 1824 was the first to prescribe it for the covered were termed vitamin B and the known antiscurvy treatment of rickets. It was not until 1906 that Hopkins (3) factor was called vitamin C, they named the new factor postulated the existence of essential dietary factors necessary vitamin D. for the prevention of diseases such as scurvy or rickets. In the meantime, an entirely different cure for rickets The first scientific approach to the disease was made by appeared, in the role of UV light. A long-standing tradition McCollum and his co-workers. In their early research (4) in held that fresh air and sunshine were good for the prevention 1914, they isolated a fat-soluble, nonsaponifiable factor from of rickets. Hess and Unger (9), in 1921, put forward the butterfat, necessary for normal growth and prevention of the explanation of their clinical observations that “seasonal inci- eye disease xerophthalmia in young rats. They named this dence of rickets is due to seasonal variations of sunlight.” In factor “fat-soluble factor A,” later “vitamin A.” The notion of her work with children, Chick and her team (6), mentioned a fat-soluble essential dietary factor for health led Mellanby above, observed that sunlight would cure rickets just as well as (5) in 1919 to experiment with puppies in which he succeeded cod-liver oil. in producing a bone disease by feeding them a diet of low-fat The field received a new impetus when Huldschinsky (10) milk and bread. He diagnosed rickets by X-ray examination, in 1919 argued that, if sunlight at the seaside or in the bone-calcium assay, and histology of bone, and noted that the mountains can prevent or cure rickets, then artificial sunlight, gross appearance of the dogs was quite similar to that of simulating light at mountain heights (“Ho¨hensonne”) should rachitic children. Even adding yeast to the dogs’ diet (to do the same. He exposed severely rachitic children to irradi- provide the water-soluble B-vitamins) and orange juice (to ation with a quartz-mercury lamp (emitting UV light) every prevent scurvy), did not prevent the appearance of rickets other day for 2 to 20 min for 2 mo and observed great within 3–4 mo. Rickets was prevented by the addition of improvement, including fresh calcium deposition, as revealed butterfat to their diet or, most effectively, of cod-liver oil. He by X-rays. He was careful to make sure that the children had wrote: “Rickets is a deficiency disease which develops in con- not been exposed to sunlight or received any supplements to sequence of the absence of some accessory food factor or their diet during those months. factors. It therefore seems probable that the cause of rickets is The thinking at that point was that rickets can be pre- a diminished intake of an anti-rachitic factor, which is either vented or cured by a component of butterfat or cod-liver oil [McCollum’s] fat-soluble factor A, or has a similar distribution that was distinct from the fat-soluble factor A (vitamin A). It to it” (5). A landmark investigation was that of Hariette can also be cured by an entirely different process, by sunlight Chick and her co-workers (6) who, in 1922, working with or UV light irradiation simulating sunlight, perhaps as the malnourished children in a clinic in post-World War I Vi- result of generally improved health. enna, showed that rickets prevalent in the children could be This dichotomy was jolted by the most surprising observa- cured by whole milk or cod-liver oil. tions, made simultaneously in 1924 in 3 different laboratories. In 1920 Hopkins (7) found that the fat-soluble factor A in Hume and Smith (11,12) found that rats suffering from rickets butterfat could be destroyed by heating and aeration. Butterfat induced by a low-phosphate diet (13) benefited from irradia- tion by UV light, not only by irradiation of the rats them- selves, but also by irradiation of the “air” in the glass jars from 1 To whom correspondence should be addressed. which they had been removed and then put back after irradi- E-mail: [email protected]. ation. It turned out that it was the irradiated sawdust, feces, 0022-3166/04 $8.00 © 2004 American Society for Nutritional Sciences. J. Nutr. 134: 1299–1302, 2004. Manuscript received 12 January 2004. 1299 1300 WOLF and spilt food left in the jars, which the rats later ate, and not “the precursor of vitamin D is not cholesterol itself, but a the air that improved the rats’ rickets. substance which is associated with and follows ‘chemically Goldblatt and Soames (14) observed that livers of irradi- pure’ cholesterol in all its stages of purification by the usual ated rats were curative when fed to rachitic rats. Steenbock methods (saponification and recrystallization).” The investi- and Black (15) went a step further. They argued that because gators converted the “pure” cholesterol into its dibromide, liver in the living rat is activated by UV light, perhaps liver recrystallized this, and recovered cholesterol upon treatment Downloaded from https://academic.oup.com/jn/article-abstract/134/6/1299/4688802 by Western University of Health Sciences Library user on 18 February 2020 removed from the animals can also be so activated. Indeed, with sodium amalgam. When purified by this method, the both liver and muscle tissue from nonirradiated rats, after recovered cholesterol, upon irradiation, had completely lost its removal from the body and exposed to UV light “was found to antirachitic potency. The authors state (22): “According to have become activated, being both growth-promoting and information received from Prof. Windaus, a specimen of bone-calcifying,” when fed to nonirradiated rachitic rats. cholesterol [was] prepared by him at our suggestion [my The third laboratory that simultaneously reported the im- italics] by the same procedure. Thus purified, cholesterol parting of antirachitic properties to inert foods, such as wheat, prepared in this way was no longer rendered anti-rachitic by lettuce, or cottonseed oil, was that of Hess and Weinstock irradiation with ultraviolet light. It is evident, therefore, (16,17). They also showed that in linseed oil, the antirachitic that not cholesterol, but [another] substance is the imme- properties resided in the nonsaponifiable fraction and that diate precursor of vitamin D.” activation occurred by UV irradiation in the absence of oxy- From this report, it is clear that, in the close collaboration gen (18). among Rosenheim, Hess, and Windaus, it was Rosenheim’s The discovery that irradiation of food, in particular of team that performed the crucial experiment demonstrating whole milk (containing butterfat), could impart antirachitic that “pure” cholesterol contained an impurity that could be potency led to tremendous advances in public health. The converted into the antirachitic vitamin photochemically. This procedure, when adopted by producers, caused a rapid decline was the essential clue that led to the identification of the in the prevalence of rickets in children. vitamin D precursor or provitamin. It was well known at that time (1924) that certain animal Windaus and Hess (21) improved upon the chemical puri- fats, such as butterfat or cod-liver oil, were antirachitic with- fication of the provitamin by the debromination of the cho- out irradiation. What, then, was the substance in vegetable lesterol dibromide by zinc dust. Rosenheim and Webster (23) oils that could be activated by irradiation? In 1925, Hess and emphasized that the work resulted from mutual suggestions his team (19) isolated sitosterol (then called phytosterol) from emanating from the 3 teams in London, Go¨ttingen, and New cottonseed oil, an abundant fraction in the nonsaponifiable York simultaneously, “according to a friendly arrangement.” portion of the oil. What appeared to the investigators to be With the discovery that “pure” cholesterol contained a sitosterol was inactive against rickets in rats. Upon irradiation small amount of an impurity that appeared to be the provita- by UV light, it became active.
Recommended publications
  • Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe
    EASTM 20 (2003 ): 92-98 Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe Zhang Li [Zhang Li is Associate Professor at the Institute for the History of Natural Sci­ ence, Chinese Academy of Sciences. She has published a number of articles on the history of modern chemistry of both the West and China and the social his­ tory of science in twentieth-century China, including studies on the influence of higher education reform on chemical education in the 1950s in China (1992) and the coordination between national needs and scientists' autonomy during 1949-/965 (2003). She recently received her doctoral degree in the Philosophy of Science from Peking University, completing a dissertation on the institution­ alization of science in the People's Republic of China. Her forthcoming book is called Gaofenzi kexue zai Zhongguo de jianli ( 1949-1965) r%'J 5t r f-4 ~ ft i:p 00 R"J ~ JI. (1949-1965) ( Institutionalization of Polymer Science in China(l949- /965) Jinan: Shandong jiaoyu chubanshe 2003, ¥ff 1¥i : W J'.f: ¥!I.. W tB It& ffr±, 2003).J * * * The synthesis of vitamin C was one of the main scientific achievements in the 1930s. Many scientists in Europe made contributions to this field, especially Albert Szent-Gyorgyi (1893-1986) from Hungary and Sir Walter Norman Ha­ worth ( 1883-1950) from England, both of whom won the Nobel Prize in 1937. In the same period, a Chinese chemist, Sa Bentie ~ :;$: ~ (1900-1986), better known outside China as Peter P. T. Sah, was also studying vitamin C.
    [Show full text]
  • Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus
    Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus Name: Adolf Otto Reinhold Windaus Lebensdaten: 25. Dezember 1876 - 9. Juni 1956 Adolf Windaus war ein deutscher Chemiker. Er untersuchte Naturstoffe, vor allem die biochemisch wichtigen Sterine und ihren Zusammenhang mit anderen Naturstoffen. Er entdeckte die chemische Verwandtschaft von Cholesterin und Gallensäure. Außerdem lieferte er Arbeiten über Vitamine, vor allem das Vitamin D. Zwischen 1927 und 1931 gelang ihm die Isolierung mehrerer D-Vitamine. Seine Forschungen bildeten die Grundlage für später von seinen Schülern durchgeführten Arbeiten über die menschlichen Sexualhormone. Für seine Verdienste um die Erforschung des Aufbaus der Sterine und ihres Zusammenhangs mit den Vitaminen wurde Adolf Windaus 1928 mit dem Nobelpreis für Chemie ausgezeichnet. Akademischer und beruflicher Werdegang Adolf Windaus begann 1895 ein Studium der Medizin an der Universität Freiburg. Er wechselte nach Berlin, wo er 1897 das Physikum bestand. 1899 wurde er in Freiburg mit einer Arbeit über Neue Beiträge zur Kenntnis der Digitalisstoffe promoviert wurde. 1901 war er zunächst in Berlin als Assistent von Emil Fischer (Nobelpreis für Chemie 1902) tätig. Während dieser Zeit wandte er sich zunehmend chemischen Fragestellungen zu. Außerdem begann er mit seinen Forschungen zu den Sterinen. 1903 habilitierte er sich in Freiburg mit einer Arbeit über Cholesterin. 1906 erhielt er eine außerordentliche Professur an der Universität Göttingen. Im Anschluss wechselte er für zwei Jahre an die Universität Innsbruck, wo er eine außerordentliche Professur für angewandte medizinische Chemie erhielt. 1915 ging er zurück nach Göttingen, wo er als Nachfolger von Otto Wallach (Nobelpreis für Chemie 1910) Ordinarius für Chemie wurde. Dort blieb er bis zu seiner Emeritierung im Jahr 1944.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • A Nobel Synthesis
    MILESTONES IN CHEMISTRY Ian Grayson A nobel synthesis IAN GRAYSON Evonik Degussa GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang, 63457, Germany he first Nobel Prize for chemistry was because it is a scientific challenge, as he awarded in 1901 (to Jacobus van’t Hoff). described in his Nobel lecture: “The synthesis T Up to 2010, the chemistry prize has been of brazilin would have no industrial value; awarded 102 times, to 160 laureates, of whom its biological importance is problematical, only four have been women (1). The most but it is worth while to attempt it for the prominent area for awarding the Nobel Prize sufficient reason that we have no idea how for chemistry has been in organic chemistry, in to accomplish the task” (4). which the Nobel committee includes natural Continuing the list of Nobel Laureates in products, synthesis, catalysis, and polymers. organic synthesis we arrive next at R. B. This amounts to 24 of the prizes. Reading the Woodward. Considered by many the greatest achievements of the earlier organic chemists organic chemist of the 20th century, he who were recipients of the prize, we see that devised syntheses of numerous natural they were drawn to synthesis by the structural Alfred Nobel, 1833-1896 products, including lysergic acid, quinine, analysis and characterisation of natural cortisone and strychnine (Figure 1). 6 compounds. In order to prove the structure conclusively, some In collaboration with Albert Eschenmoser, he achieved the synthesis, even if only a partial synthesis, had to be attempted. It is synthesis of vitamin B12, a mammoth task involving nearly 100 impressive to read of some of the structures which were deduced students and post-docs over many years.
    [Show full text]
  • Liste Der Nobelpreisträger
    Physiologie Wirtschafts- Jahr Physik Chemie oder Literatur Frieden wissenschaften Medizin Wilhelm Henry Dunant Jacobus H. Emil von Sully 1901 Conrad — van ’t Hoff Behring Prudhomme Röntgen Frédéric Passy Hendrik Antoon Theodor Élie Ducommun 1902 Emil Fischer Ronald Ross — Lorentz Mommsen Pieter Zeeman Albert Gobat Henri Becquerel Svante Niels Ryberg Bjørnstjerne 1903 William Randal Cremer — Pierre Curie Arrhenius Finsen Bjørnson Marie Curie Frédéric John William William Mistral 1904 Iwan Pawlow Institut de Droit international — Strutt Ramsay José Echegaray Adolf von Henryk 1905 Philipp Lenard Robert Koch Bertha von Suttner — Baeyer Sienkiewicz Camillo Golgi Joseph John Giosuè 1906 Henri Moissan Theodore Roosevelt — Thomson Santiago Carducci Ramón y Cajal Albert A. Alphonse Rudyard \Ernesto Teodoro Moneta 1907 Eduard Buchner — Michelson Laveran Kipling Louis Renault Ilja Gabriel Ernest Rudolf Klas Pontus Arnoldson 1908 Metschnikow — Lippmann Rutherford Eucken Paul Ehrlich Fredrik Bajer Theodor Auguste Beernaert Guglielmo Wilhelm Kocher Selma 1909 — Marconi Ostwald Ferdinand Lagerlöf Paul Henri d’Estournelles de Braun Constant Johannes Albrecht Ständiges Internationales 1910 Diderik van Otto Wallach Paul Heyse — Kossel Friedensbüro der Waals Allvar Maurice Tobias Asser 1911 Wilhelm Wien Marie Curie — Gullstrand Maeterlinck Alfred Fried Victor Grignard Gerhart 1912 Gustaf Dalén Alexis Carrel Elihu Root — Paul Sabatier Hauptmann Heike Charles Rabindranath 1913 Kamerlingh Alfred Werner Henri La Fontaine — Robert Richet Tagore Onnes Theodore
    [Show full text]
  • The Growth and Decline of German Scientific Publishing 1850–1945
    A Century of Science Publishing E.H. Fredriksson (Ed.) IOS Press, Chapter The Growth and Decline of German Scientific Publishing – Heinz Sarkowski Historian of German Publishing, Germany Summary The development of commercial scientific publishing companies in Germany commenced in the middle of the th century. University and Academy publishers never had a chance. Scientific society publishers emerged only in / during inflation, but had little impact. German publishers dominated in particular in Mathematics, Physics and Chemistry. In , % of the articles covered by the Chemical Abstracts were from German publica- tions. Until the German language was the “lingua franca” of Europe’s sci- entific community. The export of German science publishers was significant, and in around % of Springer Verlag’s turnover came from export. The international significance of German science can be seen from the large number of Nobel Prizes bestowed on it: German scientists were recipients from to , from to . After many highly qualified scientists fled the Nazis and found refuge in the Western world, constituting the start of the decline of German science. During World War II German science literature was reprinted on a large scale and sold worldwide. After the War the German lan- guage had definitively lost its world significance and German companies con- centrated thereafter on production of textbooks and journals for the home mar- ket. In the sixties they also commenced publication of research literature in English. From until the First World War one third of all Nobel Prizes in the fields of physics, chemistry and medicine were awarded to German scientists. This doc- uments the immense significance of German science before the First World War.
    [Show full text]
  • Pilgrimage Through the History of German Natural Science, University City Göttingen II Kaoru Harada Email:[email protected]
    Pilgrimage through the History of German Natural Science, University City Göttingen II Kaoru Harada Email:[email protected] Scientists in the same generation as F. Wohlelr (Fig. 89-96). We have seen several pictures of scientists worked in the University of Göttingen. Additional portraits of chemist outside the University have also collected in the Museum. Some of the chemists are Jöns Jacob Berzelius (1779-1848, Fig. 89), Eilhardt Mitscherlich (1794-1863), (Fig. 90), Justus Leibig (1803-1873, Fig. 91), Michel Eugene Chevreul (1786-1889), (Fig. 92, 93), F. W. Sertürner (1783-1841), (Fig. 94) and Ernst Otto Beckmann (1853-1923), (Fig. 95, 96). J. J. Berzelius (Fig. 89) was a famous Swedish chemist. He contributed much to the development of modern chemistry on the following subjects : [Discovery of elements, nomenclature of Fig. 90 Photograph of Eilhardt Mitscherlich (1794-1863). elements, elemental signs, atomic weights of elements, allotrope, J. Liebig (Fig. 91) was a great German chemist, and his young concept of catalyst and isomer]. The accurate measurements of day’s life was dynamic. He was a self taught chemist and he atomic weight based on the R. Boyl’s atomic theory were his studied at Paris for two years and he polished up his chemistry. great contribution to chemistry in the first half of the 19th century. He made human relations with L. J. Gay-Lussac (1778-1850) and A. Humboldt (1769-1859) because of J. Libig’s (1803-1873) interest on Arsenal. He got a position at Giessen University in the age 21 by the recommendation of A.
    [Show full text]
  • Hermann Emil Fischer: Life and Achievements
    GENERAL ARTICLE Hermann Emil Fischer: Life and Achievements G Nagendrappa Emil Fischer, considered as one of the greatest chemists of all times, carried out much of the fundamental work on purines, sugars, proteins, stereochemistry and several other areas of chemistry during the late nineteenth and early twentieth century. Because most of these are biological molecules, he is known as the ‘Father of Biochemistry’. His achievements in G Nagendrappa was a Professor of Organic chemical synthesis and analytical skills were much ahead of Chemistry at Bangalore his times. He was the second to get the Nobel Prize in Chem- University, and Head of istry in 1902. the Department of Medicinal Chemistry, Sri Introduction Ramachandra (Medical) University, Chennai. He is Carbohydrates, proteins, fats, and nucleic acids are the four major currently in Jain Univer- sity, Bangalore. He chemical constituents of living organisms. These four classes of continues to teach and do organic compounds are the main players in the emergence and research. His work is in existence of life. Extensive pioneering contributions to the devel- the area of organosilicon opment of all these areas of organic chemistry and biochemistry chemistry, synthetic and mechanistic organic were made by Emil Fischer through his more than four decades of chemistry, and clay- brilliant research work starting from the early 1870s. His uncanny catalysed organic reactions skills in analytical and synthetic work, his extraordinary under- (Green Chemistry). standing of the enormous amount of experimental results and their correct interpretation laid a solid foundation for the chemis- try of these biologically important molecules. Though his work essentially constituted analytical and synthetic organic chemis- try, its reach extended to other areas, particularly stereochemis- try, biochemistry, physiology and medicine.
    [Show full text]
  • Das Göttinger Nobelpreiswunder Ł 100 Jahre Nobelpreis
    1 Göttinger Bibliotheksschriften 21 2 3 Das Göttinger Nobelpreiswunder 100 Jahre Nobelpreis Herausgegeben von Elmar Mittler in Zusammenarbeit mit Monique Zimon 2., durchgesehene und erweiterte Auflage Göttingen 2002 4 Umschlag: Die linke Bildleiste zeigt folgende Nobelpreisträger von oben nach unten: Max Born, James Franck, Maria Goeppert-Mayer, Manfred Eigen, Bert Sakmann, Otto Wallach, Adolf Windaus, Erwin Neher. Die abgebildete Nobelmedaille wurde 1928 an Adolf Windaus verliehen. (Foto: Ronald Schmidt) Gedruckt mit Unterstützung der © Niedersächsische Staats- und Universitätsbibliothek Göttingen 2002 Umschlag: Ronald Schmidt, AFWK • Satz und Layout: Michael Kakuschke, SUB Digital Imaging: Martin Liebetruth, GDZ • Einband: Burghard Teuteberg, SUB ISBN 3-930457-24-5 ISSN 0943-951X 5 Inhalt Grußworte Thomas Oppermann ............................................................................................. 7 Horst Kern ............................................................................................................ 8 Herbert W. Roesky .............................................................................................. 10 Jürgen Danielowski ............................................................................................ 11 Elmar Mittler ...................................................................................................... 12 Fritz Paul Alfred Nobel und seine Stiftung ......................................................................... 15 Wolfgang Böker Alfred Bernhard Nobel ......................................................................................
    [Show full text]
  • NATURE August 27, 1960 VOL. 187 OBITUARY
    738 NATURE August 27, 1960 VOL. 187 400 150 :;' S 300 ~ d 100 .5 t- o:> ~ .:l [lj 0 50 200 ",,,':':' 200 1,000 2,000 3,000 4,000 Mean annual precipitation (mm.) !!, ' Fig. 4 also quite possible that the variations in the specific cffisium-137 activity in precipitation are smaller. If the values for Bergen and station 1 are excluded the mean value of the cffisium-137 deposit is 18·7 mc./km." and the standard deviation is 3·5 mc./km.". 100 200 300 400 500 600 The corresponding precipitation values vary within ± Precipitation (mm.) Nov. 1, 1958, to sampling date 20 per cent. This precipitation interval applies to Fig. 3 the greater part of Sweden, and the above value can thus be regarded as a reasonable mean value for the since the beginning of considerable global fall-out, country. and the zirconium + niobium-95 deposit with the Peirson has recently published a corresponding precipitation since the autumn, 1958. study concerning the deposit in the United Kingdom As can be seen in Figs. 2 and 3, a strong linear on samples taken during the summer, 1959". In relationship seems to exist between cffisium-137 Fig. 4, Pierson's and our values of the cffisium-137 deposit and precipitation (p = 0·99 with the 95 deposit are plotted against the mean annual precipita­ per cent confidence limit 0 ·95 and 1'00), whereas the tion. No significant differences between the two zirconium + niobium-95 values are more scattered sets of values can be detected. As the latitude of the (p = 0·74 with the 95 per cent confidence limits British sampling sites is 50-55° N., while the Swedish 0·35 and 0 ·90).
    [Show full text]
  • Lista Över Nobelpristagare
    Fysiologi SNo År Fysik Kemi eller Litteratur Fred Ekonomi medicin Wilhelm Jacobus Emil von Sully Henry Dunant; 1 1901 Conrad Henricus van 't Behring Prudhomme Frédéric Passy Röntgen Hoff Hendrik Hermann Emil Theodor Élie Ducommun; 2 1902 Lorentz; Ronald Ross Fischer Mommsen Albert Gobat Pieter Zeeman Henri Becquerel; Svante Niels Ryberg Bjørnstjerne 3 1903 Randal Cremer Pierre Curie; Arrhenius Finsen Bjørnson Marie Curie Frédéric Ivan William Mistral; Institut de droit 4 1904 Lord Rayleigh Petrovich Ramsay José international Pavlov Echegaray Adolf von Henryk 5 1905 Philipp Lenard Robert Koch Bertha von Suttner Baeyer Sienkiewicz Camillo Golgi; Giosuè 6 1906 J. J. Thomson Henri Moissan Santiago Theodore Roosevelt Carducci Ramón y Cajal Albert A. Alphonse Rudyard Ernesto Moneta; 7 1907 Eduard Buchner Michelson Laveran Kipling Louis Renault Ilya Ilyich Rudolf Gabriel Ernest Klas Pontus Arnoldson; 8 1908 Mechnikov; Christoph Lippmann Rutherford Fredrik Bajer Paul Ehrlich Eucken Ferdinand Auguste Beernaert; Braun; Wilhelm Theodor Selma 9 1909 Paul Henri d'Estournelles Guglielmo Ostwald Kocher Lagerlöf de Constant Marconi Johannes Albrecht 10 1910 Diderik van Otto Wallach Paul Heyse International Peace Bureau Kossel der Waals Tobias Michael Carel Allvar Maurice 11 1911 Wilhelm Wien Marie Curie Asser; Gullstrand Maeterlinck Alfred Fried Victor Grignard; Gerhart 12 1912 Gustaf Dalén Alexis Carrel Elihu Root Paul Sabatier Hauptmann Heike Charles Rabindranath 13 1913 Kamerlingh Alfred Werner Henri La Fontaine Richet Tagore Onnes Theodore Robert
    [Show full text]
  • Vitamin D Sources, Metabolism, and Deficiency
    H OH metabolites OH Review Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment Ligia J. Dominguez *, Mario Farruggia, Nicola Veronese and Mario Barbagallo Geriatric Unit, Department of Medicine, University of Palermo, Via del Vespro 141, 90127 Palermo, Italy; [email protected] (M.F.); [email protected] (N.V.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +39-0916552885; Fax: +39-0916552952 Abstract: Studies on vitamin/hormone D deficiency have received a vast amount of attention in recent years, particularly concerning recommendations, guidelines, and treatments. Moreover, vitamin D’s role as a hormone has been confirmed in various enzymatic, metabolic, physiological, and pathophysiological processes related to many organs and systems in the human body. This growing interest is mostly due to the evidence that modest-to-severe vitamin D deficiency is widely prevalent around the world. There is broad agreement that optimal vitamin D status is necessary for bones, muscles, and one’s general health, as well as for the efficacy of antiresorptive and anabolic bone- forming treatments. Food supplementation with vitamin D, or the use of vitamin D supplements, are current strategies to improve vitamin D levels and treat deficiency. This article reviews consolidated and emerging concepts about vitamin D/hormone D metabolism, food sources, deficiency, as well as the different vitamin D supplements available, and current recommendations on the proper use of these compounds. Citation: Dominguez, L.J.; Farruggia, Keywords: vitamin D; cholecalciferol; calcifediol; calcitriol; bone; fracture; osteoporosis M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment.
    [Show full text]