Explodingvolcanic Myths Unzen in Japan and Guagua Pichincha in Ecuador Have Taken the Lives of Eleven Jonathan Fink Volcanologists

Total Page:16

File Type:pdf, Size:1020Kb

Explodingvolcanic Myths Unzen in Japan and Guagua Pichincha in Ecuador Have Taken the Lives of Eleven Jonathan Fink Volcanologists NEWS AND VIEWS VOLCANOLOGY--------------------------------------------------------------- mild outbursts from Galeras in Colombia, Explodingvolcanic myths Unzen in Japan and Guagua Pichincha in Ecuador have taken the lives of eleven Jonathan Fink volcanologists. Re-examination of seismic and gas data from the days before the FOR students of explosive volcanism, the billions of dollars' worth of military equip­ Galeras eruption revealed correlations 1990s have been a time of unparalleled ment. Last September's reawakening of that are now being used to look for future 3 accomplishment tempered by tragic loss. Rabaul Caldera in Papua New Guinea explosions of this type . The Unzen lava New modelling experiments from two prompted an evacuation that greatly re­ dome, whose collapse gave rise to deadly groups of workers may now help us to duced casualties. In both cases, scientists pyroclastic surges, had been carefully come up with better ideas of when volca­ were able to notice familiar patterns of monitored for months. At Pichincha the noes are due to erupt violently, lessening deformation and seismicity and then ex­ two scientists killed had received a warn­ their deadly impact. Mader et a/.J pub­ plain the significance of this activity to ing based on seismicity an hour before. lished their results late last year; those of responsible civil officials. This recognition Thus the deaths arose not so much from Sugioka and Bursik2 appear on page 689 came from studying what had occurred at lack of information as from the inability to of this issue. eruptions elsewhere, and also from pre­ interpret it correctly. An important lesson Geologists have had two notable suc­ dictions of what might happen locally that has been learned from these fatalities cesses in their recent attempts to mitigate based on theoretical models. is that better theoretical models are the hazards of erupting volcanoes. The Over this same period, smaller explo­ needed to tell us which data to collect and most dramatic was in 1991 at Mount sive eruptions have been more difficult to what such numbers mean. Pinatubo in the Philippines, where timely anticipate, and both scientists and civ­ Most geologists agree that the trigger­ warnings saved thousands of lives and ilians have paid the price. Comparatively ing of explosive eruptions involves certain OBITUARY-- -, AdolfButenandt (1903-1995) ADOLF Butenandt, the outstanding bio­ tants of Drosophila and the flour moth For his next project, Butenandt chose chemist in Germany in the first half of Ephestia were known that had light eyes another problem in insect biochemistry: this century, died in Munich on January because one component of the eye isolation of the hormone responsible for 18. Given the methods of the time, his pigments was missing. Transplantation moulting. I was a participant in this achievements in isolating hormones experiments had shown that a soluble research. The bioassay concerned was were truly towering. substance was responsible for pigment based on work by G. Fraenkel, and in­ Butenandt studied chemistry and biol­ volved use of ligated larvae ofthe blowfly ogy in Marburg and Gottingen, and did Calliphora. The starting material con­ his PhD thesis under the supervision of sisted of pupae of the silkworm, and in Adolf Windaus. As a young PhD, he was the summer of 1953 we bought up all silk appointed at the Institute of Organic cocoons available. We used cocoons of Chemistry in Gottingen, under Windaus, both sexes, the males for the moulting to start work on the female sex hormone, hormone, the females for the sex attrac­ now known as oestrone. He isolated this tant. From 500 kg of pupae, we ended up hormone in the summer of 1929, simul­ with 25 mg of the crystalline hormone taneously with but independent of Ed­ which we called ecdysone. The structure, ward Doisy, and by 1932 had already when elucidated, came as a surprise. worked out its chemical structure. He Ecdysone was another steroid hormone. then turned to the male sex hormone The silkworm's sex attractant is pro­ androsterone, which he isolated from duced in small glands sitting at the tip of men's urine. Time-consuming purifica­ the female's abodmen, and is released to tion procedures, guided by a bioassay, lure the male moths for copulation. Iso­ were necessary to obtain crystals of the lating it was again a fight for enough hormone. The structure followed shortly starting material. The great campaign of afterwartjs: androsterone also turned out 1953 yielded 200,000 sex glands, but to be a steroid. Butenandt (standing) at work with Ulrich even that was not enough. Butenandt and The next task was progesterone; this Westphal on the isolation of progesterone his co-worker Hecker had to order time the starting material was pig's in 1934. 500,000 glands from Japan, and from ovaries. Again, difficult purification pro­ this material the attractant was extracted cedures monitored by a biossay were formation. Butenandt followed up a hint and its structure determined. This was necessary. In the final step, a chemical that this substance might be a metabolite the first insect pheromone to be isolated. reaction (formation of a semicarbazone) of tryptophan. He went on to discover that In 1959, Adolf Butenandt was elected helped to achieve crystallization. The it was kynurenine, which led him to President of the Max-Planck-Gesellschaft results were published in 1934. So, within postulate that "genes act by providing an der Wissenschaften (this was the new a mere five years Butenandt had isolated enzyme system that converts tryptophan name for the former Kaiser-Wilhelm­ three important hormones. For this work to kynurenine". This was nothing other Gesellschaft). He served in this position he received the Nobel Prize for Chem­ than the one-gene - one-enzyme hypoth­ until his retirement in 1972. istry in 1939, but the Nazi government esis, published in 1940. Peter Karlson prevented him from accepting the By this time, Butenandt had already honour. risen to the position of director of the Peter Karlson is a Professor Emeritus at Butenandt then left the field of steroid Kaiser Wilhelm Institute in Berlin­ the Philipps-Universitat Marburg, Emil­ hormones and began to work on the Dahlem. In 1944, the institute was trans­ Mannkopff-Strasse 2, 0-35037 Marburg, genesis of insect eye pigments. Mu- ferred to Tiibingen because of the war. Germany. 660 NATURE· VOL 373 . 23 FEBRUARY 1995 .
Recommended publications
  • Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe
    EASTM 20 (2003 ): 92-98 Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe Zhang Li [Zhang Li is Associate Professor at the Institute for the History of Natural Sci­ ence, Chinese Academy of Sciences. She has published a number of articles on the history of modern chemistry of both the West and China and the social his­ tory of science in twentieth-century China, including studies on the influence of higher education reform on chemical education in the 1950s in China (1992) and the coordination between national needs and scientists' autonomy during 1949-/965 (2003). She recently received her doctoral degree in the Philosophy of Science from Peking University, completing a dissertation on the institution­ alization of science in the People's Republic of China. Her forthcoming book is called Gaofenzi kexue zai Zhongguo de jianli ( 1949-1965) r%'J 5t r f-4 ~ ft i:p 00 R"J ~ JI. (1949-1965) ( Institutionalization of Polymer Science in China(l949- /965) Jinan: Shandong jiaoyu chubanshe 2003, ¥ff 1¥i : W J'.f: ¥!I.. W tB It& ffr±, 2003).J * * * The synthesis of vitamin C was one of the main scientific achievements in the 1930s. Many scientists in Europe made contributions to this field, especially Albert Szent-Gyorgyi (1893-1986) from Hungary and Sir Walter Norman Ha­ worth ( 1883-1950) from England, both of whom won the Nobel Prize in 1937. In the same period, a Chinese chemist, Sa Bentie ~ :;$: ~ (1900-1986), better known outside China as Peter P. T. Sah, was also studying vitamin C.
    [Show full text]
  • Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus
    Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus Name: Adolf Otto Reinhold Windaus Lebensdaten: 25. Dezember 1876 - 9. Juni 1956 Adolf Windaus war ein deutscher Chemiker. Er untersuchte Naturstoffe, vor allem die biochemisch wichtigen Sterine und ihren Zusammenhang mit anderen Naturstoffen. Er entdeckte die chemische Verwandtschaft von Cholesterin und Gallensäure. Außerdem lieferte er Arbeiten über Vitamine, vor allem das Vitamin D. Zwischen 1927 und 1931 gelang ihm die Isolierung mehrerer D-Vitamine. Seine Forschungen bildeten die Grundlage für später von seinen Schülern durchgeführten Arbeiten über die menschlichen Sexualhormone. Für seine Verdienste um die Erforschung des Aufbaus der Sterine und ihres Zusammenhangs mit den Vitaminen wurde Adolf Windaus 1928 mit dem Nobelpreis für Chemie ausgezeichnet. Akademischer und beruflicher Werdegang Adolf Windaus begann 1895 ein Studium der Medizin an der Universität Freiburg. Er wechselte nach Berlin, wo er 1897 das Physikum bestand. 1899 wurde er in Freiburg mit einer Arbeit über Neue Beiträge zur Kenntnis der Digitalisstoffe promoviert wurde. 1901 war er zunächst in Berlin als Assistent von Emil Fischer (Nobelpreis für Chemie 1902) tätig. Während dieser Zeit wandte er sich zunehmend chemischen Fragestellungen zu. Außerdem begann er mit seinen Forschungen zu den Sterinen. 1903 habilitierte er sich in Freiburg mit einer Arbeit über Cholesterin. 1906 erhielt er eine außerordentliche Professur an der Universität Göttingen. Im Anschluss wechselte er für zwei Jahre an die Universität Innsbruck, wo er eine außerordentliche Professur für angewandte medizinische Chemie erhielt. 1915 ging er zurück nach Göttingen, wo er als Nachfolger von Otto Wallach (Nobelpreis für Chemie 1910) Ordinarius für Chemie wurde. Dort blieb er bis zu seiner Emeritierung im Jahr 1944.
    [Show full text]
  • The Nobel Prize Sweden.Se
    Facts about Sweden: The Nobel Prize sweden.se The Nobel Prize – the award that captures the world’s attention The Nobel Prize is considered the most prestigious award in the world. Prize- winning discoveries include X-rays, radioactivity and penicillin. Peace Laureates include Nelson Mandela and the 14th Dalai Lama. Nobel Laureates in Literature, including Gabriel García Márquez and Doris Lessing, have thrilled readers with works such as 'One Hundred Years of Solitude' and 'The Grass is Singing'. Every year in early October, the world turns Nobel Day is 10 December. For the prize its gaze towards Sweden and Norway as the winners, it is the crowning point of a week Nobel Laureates are announced in Stockholm of speeches, conferences and receptions. and Oslo. Millions of people visit the website At the Nobel Prize Award Ceremony in of the Nobel Foundation during this time. Stockholm on that day, the Laureates in The Nobel Prize has been awarded to Physics, Chemistry, Physiology or Medicine, people and organisations every year since and Literature receive a medal from the 1901 (with a few exceptions such as during King of Sweden, as well as a diploma and The Nobel Banquet is World War II) for achievements in physics, a cash award. The ceremony is followed a magnificent party held chemistry, physiology or medicine, literature by a gala banquet. The Nobel Peace Prize at Stockholm City Hall. and peace. is awarded in Oslo the same day. Photo: Henrik Montgomery/TT Henrik Photo: Facts about Sweden: The Nobel Prize sweden.se Prize in Economic Sciences prize ceremonies.
    [Show full text]
  • Peptide Chemistry up to Its Present State
    Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31.
    [Show full text]
  • EMBO Facts & Figures
    excellence in life sciences Reykjavik Helsinki Oslo Stockholm Tallinn EMBO facts & figures & EMBO facts Copenhagen Dublin Amsterdam Berlin Warsaw London Brussels Prague Luxembourg Paris Vienna Bratislava Budapest Bern Ljubljana Zagreb Rome Madrid Ankara Lisbon Athens Jerusalem EMBO facts & figures HIGHLIGHTS CONTACT EMBO & EMBC EMBO Long-Term Fellowships Five Advanced Fellows are selected (page ). Long-Term and Short-Term Fellowships are awarded. The Fellows’ EMBO Young Investigators Meeting is held in Heidelberg in June . EMBO Installation Grants New EMBO Members & EMBO elects new members (page ), selects Young EMBO Women in Science Young Investigators Investigators (page ) and eight Installation Grantees Gerlind Wallon EMBO Scientific Publications (page ). Programme Manager Bernd Pulverer S Maria Leptin Deputy Director Head A EMBO Science Policy Issues report on quotas in academia to assure gender balance. R EMBO Director + + A Conducts workshops on emerging biotechnologies and on H T cognitive genomics. Gives invited talks at US National Academy E IC of Sciences, International Summit on Human Genome Editing, I H 5 D MAN 201 O N Washington, DC.; World Congress on Research Integrity, Rio de A M Janeiro; International Scienti c Advisory Board for the Centre for Eilish Craddock IT 2 015 Mammalian Synthetic Biology, Edinburgh. Personal Assistant to EMBO Fellowships EMBO Scientific Publications EMBO Gold Medal Sarah Teichmann and Ido Amit receive the EMBO Gold the EMBO Director David del Álamo Thomas Lemberger Medal (page ). + Programme Manager Deputy Head EMBO Global Activities India and Singapore sign agreements to become EMBC Associate + + Member States. EMBO Courses & Workshops More than , participants from countries attend 6th scienti c events (page ); participants attend EMBO Laboratory Management Courses (page ); rst online course EMBO Courses & Workshops recorded in collaboration with iBiology.
    [Show full text]
  • Nobel Prize Physicists Meet at Lindau
    From 28 June to 2 July 1971 the German island town of Lindau in Nobel Prize Physicists Lake Constance close to the Austrian and Swiss borders was host to a gathering of illustrious men of meet at Lindau science when, for the 21st time, Nobel Laureates held their reunion there. The success of the first Lindau reunion (1951) of Nobel Prize win­ ners in medicine had inspired the organizers to invite the chemists and W. S. Newman the physicists in turn in subsequent years. After the first three-year cycle the United Kingdom, and an audience the dates of historical events. These it was decided to let students and of more than 500 from 8 countries deviations in the radiocarbon time young scientists also attend the daily filled the elegant Stadttheater. scale are due to changes in incident meetings so they could encounter The programme consisted of a num­ cosmic radiation (producing the these eminent men on an informal ber of lectures in the mornings, two carbon isotopes) brought about by and personal level. For the Nobel social functions, a platform dis­ variations in the geomagnetic field. Laureates too the Lindau gatherings cussion, an informal reunion between Thus chemistry may reveal man­ soon became an agreeable occasion students and Nobel Laureates and, kind’s remote past whereas its long­ for making or renewing acquain­ on the last day, the traditional term future could well be shaped by tances with their contemporaries, un­ steamer excursion on Lake Cons­ the developments mentioned by trammelled by the formalities of the tance to the island of Mainau belong­ Mössbauer, viz.
    [Show full text]
  • A Nobel Synthesis
    MILESTONES IN CHEMISTRY Ian Grayson A nobel synthesis IAN GRAYSON Evonik Degussa GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang, 63457, Germany he first Nobel Prize for chemistry was because it is a scientific challenge, as he awarded in 1901 (to Jacobus van’t Hoff). described in his Nobel lecture: “The synthesis T Up to 2010, the chemistry prize has been of brazilin would have no industrial value; awarded 102 times, to 160 laureates, of whom its biological importance is problematical, only four have been women (1). The most but it is worth while to attempt it for the prominent area for awarding the Nobel Prize sufficient reason that we have no idea how for chemistry has been in organic chemistry, in to accomplish the task” (4). which the Nobel committee includes natural Continuing the list of Nobel Laureates in products, synthesis, catalysis, and polymers. organic synthesis we arrive next at R. B. This amounts to 24 of the prizes. Reading the Woodward. Considered by many the greatest achievements of the earlier organic chemists organic chemist of the 20th century, he who were recipients of the prize, we see that devised syntheses of numerous natural they were drawn to synthesis by the structural Alfred Nobel, 1833-1896 products, including lysergic acid, quinine, analysis and characterisation of natural cortisone and strychnine (Figure 1). 6 compounds. In order to prove the structure conclusively, some In collaboration with Albert Eschenmoser, he achieved the synthesis, even if only a partial synthesis, had to be attempted. It is synthesis of vitamin B12, a mammoth task involving nearly 100 impressive to read of some of the structures which were deduced students and post-docs over many years.
    [Show full text]
  • Liste Der Nobelpreisträger
    Physiologie Wirtschafts- Jahr Physik Chemie oder Literatur Frieden wissenschaften Medizin Wilhelm Henry Dunant Jacobus H. Emil von Sully 1901 Conrad — van ’t Hoff Behring Prudhomme Röntgen Frédéric Passy Hendrik Antoon Theodor Élie Ducommun 1902 Emil Fischer Ronald Ross — Lorentz Mommsen Pieter Zeeman Albert Gobat Henri Becquerel Svante Niels Ryberg Bjørnstjerne 1903 William Randal Cremer — Pierre Curie Arrhenius Finsen Bjørnson Marie Curie Frédéric John William William Mistral 1904 Iwan Pawlow Institut de Droit international — Strutt Ramsay José Echegaray Adolf von Henryk 1905 Philipp Lenard Robert Koch Bertha von Suttner — Baeyer Sienkiewicz Camillo Golgi Joseph John Giosuè 1906 Henri Moissan Theodore Roosevelt — Thomson Santiago Carducci Ramón y Cajal Albert A. Alphonse Rudyard \Ernesto Teodoro Moneta 1907 Eduard Buchner — Michelson Laveran Kipling Louis Renault Ilja Gabriel Ernest Rudolf Klas Pontus Arnoldson 1908 Metschnikow — Lippmann Rutherford Eucken Paul Ehrlich Fredrik Bajer Theodor Auguste Beernaert Guglielmo Wilhelm Kocher Selma 1909 — Marconi Ostwald Ferdinand Lagerlöf Paul Henri d’Estournelles de Braun Constant Johannes Albrecht Ständiges Internationales 1910 Diderik van Otto Wallach Paul Heyse — Kossel Friedensbüro der Waals Allvar Maurice Tobias Asser 1911 Wilhelm Wien Marie Curie — Gullstrand Maeterlinck Alfred Fried Victor Grignard Gerhart 1912 Gustaf Dalén Alexis Carrel Elihu Root — Paul Sabatier Hauptmann Heike Charles Rabindranath 1913 Kamerlingh Alfred Werner Henri La Fontaine — Robert Richet Tagore Onnes Theodore
    [Show full text]
  • Unwinding the Differences of the Mammalian PERIOD Clock Proteins from Crystal Structure to Cellular Function
    Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function Nicole Kuceraa,1, Ira Schmalenb, Sven Henniga,1, Rupert Öllingerc, Holger M. Straussd,2, Astrid Grudzieckic, Caroline Wieczoreka,3, Achim Kramerc, and Eva Wolfb,4,5 aMax Planck Institute of Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; bMax Planck Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, 82152 Martinsried, Germany; dNanolytics, Gesellschaft für Kolloidanalytik mbH, Am Mühlenberg 11, 14476 Potsdam, Germany; and cLaboratory of Chronobiology, Charité—Universitätsmedizin Berlin, 10098 Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany Edited by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved January 4, 2012 (received for review August 16, 2011) The three PERIOD homologues mPER1, mPER2, and mPER3 consti- the mBMAL1/mCLOCK transcription factor complex. Addition- tute central components of the mammalian circadian clock. They ally, the PAS domains of NPAS2, mCLOCK, and mPER2 have been contain two PAS (PER-ARNT-SIM) domains (PAS-A and PAS-B), which reportedtobindheme(13–16).Inthecircadianclock,mPER1and mediate homo- and heterodimeric mPER-mPER interactions as well mPER2 proteins are found in large protein complexes, likely estab- as interactions with transcription factors and kinases. Here we pre- lishing multiple interactions via their PAS domains, the central sent crystal structures of PAS domain fragments of mPER1 and CKIε∕δ binding domain and the C-terminal mCRY binding region mPER3 and compare them with the previously reported mPER2 (17–19). structure. The structures reveal homodimers, which are mediated Studies with mPER knockout mice showed that mPER1 and by interactions of the PAS-B β-sheet surface including a highly con- mPER2 are more essential for circadian rhythmicity than mPER3 served tryptophan (Trp448mPER1, Trp419mPER2, Trp359mPER3).
    [Show full text]
  • The Growth and Decline of German Scientific Publishing 1850–1945
    A Century of Science Publishing E.H. Fredriksson (Ed.) IOS Press, Chapter The Growth and Decline of German Scientific Publishing – Heinz Sarkowski Historian of German Publishing, Germany Summary The development of commercial scientific publishing companies in Germany commenced in the middle of the th century. University and Academy publishers never had a chance. Scientific society publishers emerged only in / during inflation, but had little impact. German publishers dominated in particular in Mathematics, Physics and Chemistry. In , % of the articles covered by the Chemical Abstracts were from German publica- tions. Until the German language was the “lingua franca” of Europe’s sci- entific community. The export of German science publishers was significant, and in around % of Springer Verlag’s turnover came from export. The international significance of German science can be seen from the large number of Nobel Prizes bestowed on it: German scientists were recipients from to , from to . After many highly qualified scientists fled the Nazis and found refuge in the Western world, constituting the start of the decline of German science. During World War II German science literature was reprinted on a large scale and sold worldwide. After the War the German lan- guage had definitively lost its world significance and German companies con- centrated thereafter on production of textbooks and journals for the home mar- ket. In the sixties they also commenced publication of research literature in English. From until the First World War one third of all Nobel Prizes in the fields of physics, chemistry and medicine were awarded to German scientists. This doc- uments the immense significance of German science before the First World War.
    [Show full text]
  • Pilgrimage Through the History of German Natural Science, University City Göttingen II Kaoru Harada Email:[email protected]
    Pilgrimage through the History of German Natural Science, University City Göttingen II Kaoru Harada Email:[email protected] Scientists in the same generation as F. Wohlelr (Fig. 89-96). We have seen several pictures of scientists worked in the University of Göttingen. Additional portraits of chemist outside the University have also collected in the Museum. Some of the chemists are Jöns Jacob Berzelius (1779-1848, Fig. 89), Eilhardt Mitscherlich (1794-1863), (Fig. 90), Justus Leibig (1803-1873, Fig. 91), Michel Eugene Chevreul (1786-1889), (Fig. 92, 93), F. W. Sertürner (1783-1841), (Fig. 94) and Ernst Otto Beckmann (1853-1923), (Fig. 95, 96). J. J. Berzelius (Fig. 89) was a famous Swedish chemist. He contributed much to the development of modern chemistry on the following subjects : [Discovery of elements, nomenclature of Fig. 90 Photograph of Eilhardt Mitscherlich (1794-1863). elements, elemental signs, atomic weights of elements, allotrope, J. Liebig (Fig. 91) was a great German chemist, and his young concept of catalyst and isomer]. The accurate measurements of day’s life was dynamic. He was a self taught chemist and he atomic weight based on the R. Boyl’s atomic theory were his studied at Paris for two years and he polished up his chemistry. great contribution to chemistry in the first half of the 19th century. He made human relations with L. J. Gay-Lussac (1778-1850) and A. Humboldt (1769-1859) because of J. Libig’s (1803-1873) interest on Arsenal. He got a position at Giessen University in the age 21 by the recommendation of A.
    [Show full text]
  • Book Reviews
    86 Bull. Hist. Chem., VOLUME 31, Number 2 (2006) BOOK REVIEWS Drug Discovery—A History. Walter Sneader, John Wiley, mercury is particularly interesting. Study of this sub- New York, 2005, Cloth, 468 pp, $65. stance eventually led to the discovery of arsphenamine, an organomercurial used to treat syphilis and much later stimulated the discovery of the potent diuretic ethacrynic I count myself fortunate to own copies of Walter acid. This and other interesting stories set forth in this Sneader’s books on drug discovery: The Evolution of section help us to understand the evolutionary nature of Modern Medicines (1985), Drug Prototypes and Their drug discovery from a historical perspective. Exploitation (1996) and Drug Discovery – A History Part 2 – Drugs from Naturally Occurring Proto- (2005). While it is true that each book generally ad- types. In this section of the book Sneader covers three dresses the topic of drug discovery with significant important topics in the history of drug discovery. Plants, overlap in the material covered, it also is true that the hormones, and microorganisms proved to be rich sources most recent work is much more than a third edition of of new medicines after advances in science permitted an existing book. As the title promises, the focus is on isolation and purification of active components. Here history. Because chemical structures are included with we are provided with the historical background that the text, I found the content of this book to be uniquely led to initial discovery of useful activity, followed by satisfying to a chemist interested in history. The material isolation and purification of the active substance, struc- in this book is organized by the source of drug prototypes ture determination, total synthesis, and in some cases rather then chronological order of discovery or thera- manufacture of the drug.
    [Show full text]