The Science Behind the Nobel Prizes in Medicine and Chemistry Is The

Total Page:16

File Type:pdf, Size:1020Kb

The Science Behind the Nobel Prizes in Medicine and Chemistry Is The FRONTIER A MAGAZINE ABOUT ALLIGATOR BIOSCIENCE AND IMMUNO-ONCOLOGY #2, 2018 The science behind the Nobel Prizes in Medicine and Chemistry is the core in Alligator’s research and development FRONTIER – A MAGAZINE ABOUT ALLIGATOR BIOSCIENCE AND IMMUNO-ONCOLOGY The Nobel Prize in Physiology or Medicine has been awarded to: Alligator carries on the legacy 1901 Emil von Behring 1902 Ronald Ross 1903 Niels Ryberg Finsen 1904 Ivan Pavlov of the Nobel Prize winners in 1905 Robert Koch 1906 Camillo Golgi 1907 Alphonse Laveran Medicine and Chemistry . 1908 Ilja Metjnikov Paul Ehrlich 1909 Theodor Kocher On Monday October 1, it was announced that James P. Allison and Tasuku Honjo 1910 Albrecht Kossel 1911 Allvar Gullstrand had been awarded the 2018 Nobel Prize in Physiology or Medicine for discov- 1912 Alexis Carrel 1913 Charles Richet eries on immune checkpoints – which according to the Nobel Assembly at the 1914 Robert Bárány 1919 Jules Bordet Karolinska Institute “has revolutionized treatment and changed our view of how 1920 August Krogh 1922 Archibald V. Hill cancers can be treated.” Otto Meyerhof 1923 Frederick G. Banting John Macleod I share the opinion of the Nobel Assembly. 1924 Willem Einthoven 1926 Johannes Fibiger The groundbreaking research by James 1927 Julius Wagner- Jauregg Allison and Tasuku Honjo on how the 1928 Charles Nicolle immune system can be used to fight cancer 1929 Christiaan Eijkman Sir Frederick Hopkins has profoundly changed the therapeutic 1930 Karl Landsteiner 1931 Otto Warburg arena. Not only in terms of how we treat 1932 Sir Charles Sherrington cancer but also on the prospect of surviving Edgar Adrian the disease. 1933 Thomas H. Morgan 1934 George H. Whipple George R. Minot William P. Murphy The advancements at Alligator would not 1935 Hans Spemann 1936 Sir Henry Dale have been possible without Allison’s and Otto Loewi 1937 Albert Szent-Györgyi Honjo’s research. Since the first immuno- 1938 Corneille Heymans therapy antibody was approved in 2011, 1939 Gerhard Domagk 1943 Henrik Dam the CTLA-4 blocker Yervoy®, scientists all Edward A. Doisy 1944 Joseph Erlanger over the world have pursued the quest of Herbert S. Gasser 1945 Sir Alexander developing drugs that activate the immune Fleming system against cancer. Ernst Boris Chain Howard Walter body library ALLIGATOR-GOLD®. ATOR-1015 Florey 1946 Hermann Joseph I am proud to say that Alligator plays an is built and optimized using both phage Muller 1947 Carl Cori important part in this global effort ATOR- display and the protein optimization tech- Gerty Cori 1015 is leading the way for the next gener- nology FIND. Moreover, the key mechanism Bernardo Alberto Houssay ation of CTLA-4 products, bispecific anti- of action of ATOR-1015 is to activate the 1948 Paul Müller 1949 Walter Hess bodies with tumor-localizing properties. It immune system via CTLA-4. Three Nobel Egas Moniz 1950 Edward C. Kendall is directly borne out of Allison’s research, Prize discoveries in the same molecule. This Philip S. Hench Tadeus Reichstein is the first of its kind, and will enter clinical will be a difficult record to beat! 1951 Max Theiler phase I before the end of the year. 1952 Selman A. Waksman 1953 Hans Krebs At Alligator, we will now make every effort to Fritz Lipmann 1954 John F. Enders What is more, George Smith, Frances H. continue to work in the spirit of the Nobel Thomas H. Weller Frederick C. Robbins Arnold, and Greg Winter were awarded the Prize. A Revolution for Life. 1955 Hugo Theorell Nobel Prize in Chemistry on October 3. 1956 André F. Cournand Dickinson W. Arnold developed a protein evolution tech- Per Norlén, CEO Richards Werner Forssmann nology that is related to Alligator’s FIND® 1957 Daniel Bovet 1958 George Wells Beadle technology (Fragment INduced Diversity), In honor of previous prize winners in the phys- Edward Lawrie iology and medicine categories, we have listed Tatum and Smith and Winter developed phage dis- Joshua Lederberg play, the technology behind our human anti- all of their names in this issue of Frontier. 1959 Severo Ochoa Arthur Kornberg Frontier #2, 2018 2 FRONTIER – A MAGAZINE ABOUT ALLIGATOR BIOSCIENCE AND IMMUNO-ONCOLOGY 1960 Sir Frank Macfarlane Burnet Peter Medawar Tasuku Honjo, James P. Allison and 1961 Georg von Békésy 1962 Francis Crick James Watson Maurice Wilkins their discoveries. 1963 Sir John Eccles Alan L. Hodgkin Andrew F. Huxley This year’s Nobel Prize in Physiology or Medicine was awarded to James P. Allison 1964 Konrad Bloch USA Feodor Lynen and Tasuku Honjo for their discovery of cancer therapy through the inhibition of 1965 François Jacob negative immune regulation. Thanks to research by Allison and Honjo, it is now André Lwoff Jacques Monod possible to release the inherent power of the immune system to fight and destroy 1966 Peyton Rous Charles B. Huggins cancer cells in a completely new and revolutionary way. 1967 Ragnar Granit Haldan Keffer Hartline George Wald 1968 Robert W. Holley Har Gobind Khorana Marshall W. Nirenberg 1969 Max Delbrück Alfred D. Hershey Salvador E. Luria 1970 Sir Bernard Katz Ulf von Euler Julius Axelrod 1971 Earl W Sutherland Jr. 1972 Gerald M. Edelman Rodney R. Porter 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen 1974 Christian de Duve Albert Claude George E. Palade 1975 David Baltimore Renato Dulbecco Howard M. Temin 1976 Baruch S. Blumberg D. Carleton Gajdusek 1977 Andrew V. Schally Roger Guillemin Rosalyn Yalow 1978 Werner Arber Daniel Nathans Hamilton O Smith Tasuku Honjo antigen receptors can activate or inactivate 1979 Allan M. Cormack Tasuku Honjo, born in 1942, is a Japanese the immune system’s T cells. This knowledge Godfrey N. Hounsfield immunologist. He is best known for his constitutes the core of immuno-oncology 1980 Jean Dausset Baruj Benacerraf discovery and research into the mecha- and Allison’s research resulted in the first George D. Snell 1981 Roger W. Sperry nisms and proteins that are essential in the immuno-oncology drug in 2011. Torsten N. Wiesel regulation of immune reactions. Honjo’s 1982 Sune Bergström Bengt Samuelsson research has paved the way for the develop- Allison also has very personal experiences John R. Vane Storbritannien ment of anti-PD-1 immunotherapies, which of cancer. At the age of eleven, his mother 1983 Barbara McClintock 1984 Niels K. Jerne have been approved for the treatment of died from lymphoma and his brother Georges J F Köhler César Milstein melanomas and other forms of cancer. He passed away from prostate cancer in 2005. 1985 Michael S. Brown has worked as a researcher in both the US Allison himself has undergone surgery for Joseph L. Goldstein 1986 Rita Levi-Montalcini and in Japan. prostate cancer and skin cancer and is Stanley Cohen 1987 Susumu Tonegawa currently undergoing immunotherapy treat- 1988 Sir James W. Black Gertrude B. Elion James P. Allison ment for bladder cancer. George H. Hitchings James P. Allison was born in 1948 in Alice, 1989 J. Michael Bishop Harold E. Varmus Texas, and is the youngest of three sons to Allison is a professor at M.D. Anderson 1990 Joseph E. Murray Edward Donnall Constance Kalula (Lynn) and Albert Murphy Cancer Center at the University of Texas. In Thomas 1991 Erwin Neher Allison. His scientific interest was aroused his spare time, he plays the harmonica in a Bert Sakmann 1992 Edmond H. Fischer in earnest by his math teacher in the eighth blues band called Checkpoints together with Edwin G. Krebs grade, an interest that has meant Allison has colleagues from immuno-oncology. 1993 Richard J. Roberts Phillip A. Sharp spent a large share of his life studying how Frontier #2, 2018 3 FRONTIER – A MAGAZINE ABOUT ALLIGATOR BIOSCIENCE AND IMMUNO-ONCOLOGY 1994 Alfred G. Gilman Frances H. Arnold, George P. Smith and Sir Gregory P. Winter Martin Rodbell 1995 Edward B. Lewis Eric F. Wieschaus Christiane Nüsslein- The chemistry prize winners have Volhard 1996 Rolf M. Zinkernagel Peter C. Doherty taken control over evolution. 1997 Stanley B. Prusiner 1998 Robert F. Furchgott Louis J. Ignarro Ferid Murad The first seed of life on earth appeared some 3.7 billion years ago. Evolution has 1999 Günter Blobel since produced almost inconceivable riches on a previously deserted planet 2000 Paul Greengard Eric R. Kandel through its modus operandi of genetic change and selection. Life now exists in Arvid Carlsson 2001 Tim Hunt locations under the most varying conditions. This year’s Nobel Prize winners in Sir Paul Nurse Leland H. Hartwell Chemistry have been inspired by evolution and used the same principles to develop 2002 Sydney Brenner John E. Sulston proteins that solve a number of our chemical challenges, such as manufacturing H. Robert Horvitz biofuel and drugs. Using the phage display method, we can now develop antibodies 2003 Paul C. Lauterbur Sir Peter Mansfield to treat auto-immune diseases and in some cases cure metastatic cancer. 2004 Richard Axel Linda B Buck 2005 Barry Marshall Robin Warren 2006 Andrew Z. Fire Craig C. Mello 2007 Mario R. Capecchi Oliver Smithies Sir Martin J. Evans 2008 Harald zur Hausen Françoise Barré- Sinoussi Luc Montagnier 2009 Elizabeth Blackburn Carol Greider Jack Szostak 2010 Robert Edwards 2011 Bruce Beutler Jules Hoffmann Ralph Steinman 2012 John B. Gurdon Shinya Yamanaka 2013 James Rothman Randy Schekman Thomas Südhof 2014 John O’Keefe Edvard Moser May-Britt Moser The year’s Nobel Prize in Chemistry was Frances H. Arnold was born in 1956 in 2015 William C. Campbell Satoshi Ōmura awarded to three people: Frances H. Pittsburgh, US. She received a PhD in 1985 Tu Youyou 2016 Yoshinori Ohsumi Arnold, George P. Smith and Sir Gregory from the University of California, Berkeley, 2017 Jeffrey C. Hall sMichael Rosbash P.
Recommended publications
  • Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe
    EASTM 20 (2003 ): 92-98 Peter P. T. Sah and the Synthesis of Vitamin C in China and Europe Zhang Li [Zhang Li is Associate Professor at the Institute for the History of Natural Sci­ ence, Chinese Academy of Sciences. She has published a number of articles on the history of modern chemistry of both the West and China and the social his­ tory of science in twentieth-century China, including studies on the influence of higher education reform on chemical education in the 1950s in China (1992) and the coordination between national needs and scientists' autonomy during 1949-/965 (2003). She recently received her doctoral degree in the Philosophy of Science from Peking University, completing a dissertation on the institution­ alization of science in the People's Republic of China. Her forthcoming book is called Gaofenzi kexue zai Zhongguo de jianli ( 1949-1965) r%'J 5t r f-4 ~ ft i:p 00 R"J ~ JI. (1949-1965) ( Institutionalization of Polymer Science in China(l949- /965) Jinan: Shandong jiaoyu chubanshe 2003, ¥ff 1¥i : W J'.f: ¥!I.. W tB It& ffr±, 2003).J * * * The synthesis of vitamin C was one of the main scientific achievements in the 1930s. Many scientists in Europe made contributions to this field, especially Albert Szent-Gyorgyi (1893-1986) from Hungary and Sir Walter Norman Ha­ worth ( 1883-1950) from England, both of whom won the Nobel Prize in 1937. In the same period, a Chinese chemist, Sa Bentie ~ :;$: ~ (1900-1986), better known outside China as Peter P. T. Sah, was also studying vitamin C.
    [Show full text]
  • Como Citar Este Artigo Número Completo Mais Informações Do
    Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação ISSN: 1518-2924 Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina STANFORD, Jailiny Fernanda Silva; SILVA, Fábio Mascarenhas e Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, vol. 26, e73786, 2021, Janeiro-Abril Programa de Pós-graduação em Ciência da Informação - Universidade Federal de Santa Catarina DOI: https://doi.org/10.5007/1518-2924.2021.e73786 Disponível em: https://www.redalyc.org/articulo.oa?id=14768130002 Como citar este artigo Número completo Sistema de Informação Científica Redalyc Mais informações do artigo Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Site da revista em redalyc.org Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa acesso aberto Artigo Original Prêmio Nobel como fator de influência nas citações dos pesquisadores: uma análise dos laureados de Química e Física (2005 - 2015) Nobel Prize as an influencing factor in researchers' citations: an analysis of Chemistry and Physics laureates (2005 to 2015) Jailiny Fernanda Silva STANFORD Mestre em Ciência da Informação (PPGCI/UFPE) Bibliotecária-chefe Seminário Teológico Batista do Norte do Brasil (STBNB), Recife, Brasil [email protected] https://orcid.org/0000-0003-2112-6561 Fábio Mascarenhas e SILVA Doutor em Ciência da Informação (USP), Professor Associado Universidade Federal de Pernambuco, Departamento de Ciência da Informação, Recife, Brasil [email protected] https://orcid.org/0000-0001-5566-5120 A lista completa com informações dos autores está no final do artigo RESUMO Objetivo: Analisa a influência nos índices de citação por parte dos pesquisadores que foram contemplados pelo prêmio Nobel nas áreas da Física e Química no período de 2005 a 2015.
    [Show full text]
  • Chemistry and Spectroscopy of the Transition Metals
    Chemistry and Spectroscopy of the Transition Metals • Structure of metal complexes • Oxidation states of metals • Color/Spectroscopy • Magnetic Properties • Chelate Effects • Electron Transfer Chemistry Nobel Prize in Chemistry, 1913 Alfred Werner "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier investigations and opened up new fields of research especially in inorganic chemistry” Zurich University Stereochemistry of Coordination Complexes Pt (NH3)2Cl2 Cl NH 3 NH3 Cl Pt Pt Cl NH Cl 3 NH3 Orange-Yellow Pale Yellow (dipole moment) No dipole (cis-platin) Inner Sphere vs Outer Sphere Coordination H3 H3 N N NH H N NH H3N 3 [Cl- ] 3 3 - Co 3 Co [Cl 2] H N NH3 H N NH3 [ 3 ] [ 3 ] N Cl H3 H3 H3 N N Cl H3N Cl H3N Co [Cl- ] Co [Cl-] H N Cl Cl NH3 [ 3 ] N [ N ] H3 H3 Transition Metal Chemistry • Multiple Oxidation States • Coordination Chemistry/Stereochemistry • Crystal Field Splitting: Optical and Magnetic Properties • Ligand Field Splitting: Spectrochemical Series • Distortion to Tetragonal, Square Planar • Ligand Field Stabilization Energy • Hard and Soft Acids and Bases • Chelate Effect • Stereochemical Control of Binding Affinity • Water Exchange • Electron Exchange Organization of Periodic Chart 1s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 6p 7s 6d 4f 5f Shielding r2Ψ2 1s 3d 3p 3s Penetration: 3s > 3p > 3d r 3d orbitals are shielded and not exposed much; Outside world won’t know as much how many d e- there are Transition Metals Are Found in Several Oxidation States Charge to mass ratio - of ions: current e which passes through circuit divided by mass gained on electrode.
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus
    Curriculum Vitae Prof. Dr. Adolf Otto Reinhold Windaus Name: Adolf Otto Reinhold Windaus Lebensdaten: 25. Dezember 1876 - 9. Juni 1956 Adolf Windaus war ein deutscher Chemiker. Er untersuchte Naturstoffe, vor allem die biochemisch wichtigen Sterine und ihren Zusammenhang mit anderen Naturstoffen. Er entdeckte die chemische Verwandtschaft von Cholesterin und Gallensäure. Außerdem lieferte er Arbeiten über Vitamine, vor allem das Vitamin D. Zwischen 1927 und 1931 gelang ihm die Isolierung mehrerer D-Vitamine. Seine Forschungen bildeten die Grundlage für später von seinen Schülern durchgeführten Arbeiten über die menschlichen Sexualhormone. Für seine Verdienste um die Erforschung des Aufbaus der Sterine und ihres Zusammenhangs mit den Vitaminen wurde Adolf Windaus 1928 mit dem Nobelpreis für Chemie ausgezeichnet. Akademischer und beruflicher Werdegang Adolf Windaus begann 1895 ein Studium der Medizin an der Universität Freiburg. Er wechselte nach Berlin, wo er 1897 das Physikum bestand. 1899 wurde er in Freiburg mit einer Arbeit über Neue Beiträge zur Kenntnis der Digitalisstoffe promoviert wurde. 1901 war er zunächst in Berlin als Assistent von Emil Fischer (Nobelpreis für Chemie 1902) tätig. Während dieser Zeit wandte er sich zunehmend chemischen Fragestellungen zu. Außerdem begann er mit seinen Forschungen zu den Sterinen. 1903 habilitierte er sich in Freiburg mit einer Arbeit über Cholesterin. 1906 erhielt er eine außerordentliche Professur an der Universität Göttingen. Im Anschluss wechselte er für zwei Jahre an die Universität Innsbruck, wo er eine außerordentliche Professur für angewandte medizinische Chemie erhielt. 1915 ging er zurück nach Göttingen, wo er als Nachfolger von Otto Wallach (Nobelpreis für Chemie 1910) Ordinarius für Chemie wurde. Dort blieb er bis zu seiner Emeritierung im Jahr 1944.
    [Show full text]
  • Passport to an International Career -True Globalism
    Passport to an international career̶True globalism ● Maki KAWAI Professor at Graduate School of Frontier Sciences, The University of Tokyo; RIKEN The Nobel Prize in Chemistry 2010 was awarded jointly to United States, it is rare for one to earn one’s Ph.D. in the United Richard F. Heck, Akira Suzuki, and Ei-ichi Negishi for their con- States like Ei-ichi Negishi. Satoru Masamune left Japan to study tributions to the development of organic synthesis that is also at the University of California, Berkley in 1957 as a Fulbright important industrially. Since palladium-catalyzed cross coupling scholar, and later became professor at Massachusetts Institute of is an area in which Japan is strong and for which it had been Technology (MIT) nurturing many organic scientists. Hiroaki widely expected that someday someone would receive the award, Suga of the Department of Chemistry, School of Science, The I honor the three winners and at the same time appreciate having University of Tokyo, and Yukishige Ito of RIKEN, who is pres- the opportunity to learn of the achievements made by many ently working on glycotrilogy at Exploratory Research for researchers engaged in this area of study. It is well known that Advanced Technology (ERATO), have both studied at MIT’s many of the Nobel Prize winners pursue their research work in Masamune Laboratory. Kazuo Nakamoto (Professor Emeritus at the United States, and Japanese winners are no exception. Marquette University in the United States, deceased June 2011) Among the fifteen winners up to 2010, the five winners of Ei-ichi of infrared or Raman spectroscopies left for the United States in Negishi (Nobel Prize in Chemistry 2010), Osamu Shimomura 1958, and is famous for his editions of“ Infrared and Raman Spec- (Nobel Prize in Chemistry 2008), Yoichiro Nambu (Nobel Prize tra of Inorganic and Coordination Compounds,” with which I am in Physics 2008), Susumu Tonegawa (Nobel Prize in Physiology sure many of you are familiar.
    [Show full text]
  • The Nobel Prize in Chemistry 2013 the Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Chemistry for 2013 To
    PRESSMEDDELANDE Press release 9 October 2013 The Nobel Prize in Chemistry 2013 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry for 2013 to Martin Karplus Michael Levitt Arieh Warshel Université de Strasbourg, France and Stanford University School of Medicine, University of Southern California, Harvard University, Cambridge, MA, USA Stanford, CA, USA Los Angeles, CA, USA “for the development of multiscale models for complex chemical systems” The computer — your Virgil in the world of atoms Chemists used to create models of molecules This year’s Nobel Laureates in chemistry took the best using plastic balls and sticks. Today, the modelling from both worlds and devised methods that use both is carried out in computers. In the 1970s, Martin classical and quantum physics. For instance, in simu- Karplus, Michael Levitt and Arieh Warshel laid the lations of how a drug couples to its target protein in foundation for the powerful programs that are used the body, the computer performs quantum theoretical to understand and predict chemical processes. calculations on those atoms in the target protein that Computer models mirroring real life have become interact with the drug. The rest of the large protein is crucial for most advances made in chemistry today. simulated using less demanding classical physics. Chemical reactions occur at lightning speed. In a fraction Today the computer is just as important a tool for of a millisecond, electrons jump from one atomic nucleus chemists as the test tube. Simulations are so realistic to the other. Classical chemistry has a hard time keeping that they predict the outcome of traditional experiments.
    [Show full text]
  • Dear Colleague, This Invitation Is Being Sent on Behalf of Prof
    Dear colleague, On behalf of Prof. Fernand Marquis (San Diego State U., USA), Prof. Soteris Kalogirou (Cyprus U. of Technology, Cyprus), and Prof. Bernard Raveau (U. of Caen, France), co-chairs of the 2nd International Symposium on Solid State Chemistry for Applications and Sustainable Development in my capacity as President of SIPS 2020/2021, I am personally inviting you to participate as an author/speaker. This major symposium focuses on solid-state chemistry corresponds to the relationships occurring between the synthesis, structure, and physical-chemical properties of solid inorganic compounds (in most cases), leading to a final compound with optimized properties such as advances in the synthesis routes, design of materials for sustainable energy production, advanced characterization techniques and applications, etc. These and many others are among the topics of the symposium. This symposium will be held as part of the combined SIPS 2020/2021, an annual multidisciplinary summit, organized by the not-for-profit corporation FLOGEN Stars Outreach (www.flogen.org), which is dedicated to achieving sustainability through science and technology applied in various fields. It incorporates summit plenary lectures from well-known speakers that address the link between various domains in the pursuit of sustainable development, as well as specific scientific symposia featuring specialized presentations in a specific domain, with the same goals in mind. The symposium and overall summit are planned to be held in Phuket, Thailand from November 28th – December 2nd 2021. We have confirmed until now the participation of the following 9 Nobel Laureates: Prof. Dan Shechtman, Prof. Didier Queloz, Prof. M. Stanley Whittingham, Sir Konstantin Novoselov, Prof.
    [Show full text]
  • The History of Biochemistry
    ISSN 2409-4943. Ukr. Biochem. J., 2019, Vol. 91, N 1 THES HHISI TORY OF BBIOCHEMISIOCHEMISTRY УДК 577.12 + 577.23 doi: https://doi.org/10.15407/ubj91.01.108 Внесок лауреатіВ нобеліВської премії В розВиток динамічної біохімії та біоенергетики. е. бухнер, а. коссель, р. Вільштеттер, о. мейєргоф, а. хілл, о. Варбург, а. сент-дьєрді В. М. ДанилоВа, Р. П. ВиногРаДоВа, С. В. КоМіСаРенКо і нститут біохімії ім. о. В. Палладіна НАН України, Київ; e-mail: [email protected] отримано: 29 листопада 2018; затверджено: 13 грудня 2018 Дякуючи геніальним відкриттям нобелівських лауреатів першої половини ХХ ст. – е. Бухнера, а. Косселя, Р. Вільштеттера, о. Мейєргофа, а. Хілла, о. Варбурга, а. Сент-Дьєрді, сьогодні ми маємо уявлення про механізм перетворення і окислення органічних речовин в живих організмах. В статті представлено аналіз творчої діяльності цих геніїв експерименту і людської думки, які через розшифрування основних шляхів перетворення вуглеводів і енергії в живих організмах заклали основи динамічної біохімії та біоенергетики (одного з розділів біохімічної науки). К л ю ч о в і с л о в а: е. Бухнер, а. Коссель, Р. Вільштеттер, о. Мейєргоф, а. Хілл, о. Варбург, а. Сент- Дьєрді, зимаза, ензими, динамічна біохімія, біоенергетика. априкінці XIX ст. дослідники вже що окислюються. Перетворення органічних зрозуміли, що між початковими і речовин у живих організмах відбувається без Н кінцевими продуктами перетворень підвищення температури і за фізіологічних складних органічних сполук мають утворю- умов завдяки участі в реакціях біологічних ватись проміжні компоненти. Так, протеїни, каталізаторів – ензимів. вуглеводи і жири не відразу утворюють дво- Але це не було відомо наприкінці ХІХ – на окис вуглецю і воду; в процесі їх перетворення початку ХХ ст.
    [Show full text]
  • Molecular Geometry and Molecular Graphics: Natta's Polypropylene And
    Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • Chemistry of the D-Block Elements Chemistry of the D-Block Elements
    Chemistry of the d-Block Elements History: Louis Nicolas Vauquelin 16. Mai 1763 – 14. Nov. 1829 Leopold Gmelin 2. Aug. 1788 – 13. Apr. 1853 Chemistry of the d-Block Elements History: H3N NH3 Cl Cl Pd Pd NH H3N 3 Cl Cl Louis Nicolas Vauquelin 1813 CN NC CN CoIII NC CN Gmelin 1822 NC 1 Chemistry of the d-Block Elements History: 1844: Peyrone’s Chloride 1844: Reiset [PtCl2(NH3)2] -- note! same formula! -- [PtCl2(NH3)2] ! (isomers are super-important in chemistry!) Chemistry of the d-Block Elements cis- and trans- Platinum Isomers: Serendipity in Chemistry Cisplatin was approved by the FDA for the treatment of genitourinary tumors in 1978. Since then, Michigan State has collected over $160 million in royalties from cisplatin and a related drug, carboplatin, which Prof. Barnett Rosenberg, MSU was approved by the FDA in 1989 (Prof. S.J. Lippard, MIT) for the treatment of ovarian cancers. "Testicular cancer went from a disease that normally killed about 80% of the patients, to one which is close to 95% curable. This is Newest generation: probably the most exciting development in the treatment of cancers that we have had in the past 20 years. It is now the O treatment of first choice in ovarian, bladder, and osteogenic sarcoma [bone] cancers as well." O NH3 —Barnett Rosenberg, who led the research group that discovered Pt cisplatin, commenting on the impact of cisplatin in cancer chemotherapy O NH3 O carboplatin 2 Chemistry of the d-Block Elements Cisplatin acts by cross-linking DNA in several different ways, making it impossible for rapidly dividing cells to duplicate their DNA for mitosis.
    [Show full text]