bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453494; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evaluating 87Sr/86Sr isotope ratios and Sr mass fractions in otoliths of different European freshwater 2 fish species as fishery management tool in an Alpine foreland with limited geological variability 3 Andreas Zitek1,2*, Johannes Oehm3, Michael Schober1, Anastassiya Tchaikovsky1, Johanna Irrgeher5, 4 Anika Retzmann5, Bettina Thalinger4, Michael Traugott3, Thomas Prohaska5 5 1University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of 6 Analytical Chemistry, Muthgasse 18, 1190 Wien, Austria 7 2FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 8 Technopark 1D, 3430 Tulln, Austria 9 3University of Innsbruck, Department of Zoology, Technikerstraße 25, 6020 Innsbruck, Austria 10 4University of Guelph, 50 Stone Road East, Guelph, N1G2W1, Canada 11 5Department of General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, 12 Montanuniversität Leoben, Franz Josef‐Straße 18, 8700 Leoben, Austria 13 14 *Corresponding author:
[email protected] 15 16 Highlights 17 Otolith microchemistry applied in in area with limited geological variability 18 Fish transferred, stocked or migrated were identified 19 Regressions between Sr/Ca ratios in water predict Sr mass fractions in otoliths 20 Species specific Sr discrimination from water into otoliths 21 European freshwater fish species assigned to habitat clusters of origin 22 Keywords 23 Strontium isotopes, Sr elemental fingerprint, otolith microchemistry, freshwater fish species, fishery 24 management.