An Automated Framework for Board-level Trojan Benchmarking Tamzidul Hoque, Shuo Yang, Aritra Bhattacharyay, Jonathan Cruz, and Swarup Bhunia Department of Electrical and Computer Engineering University of Florida, Gainesville, Florida 32611 Email: fthoque, sy, abhattacharyay, jonc205g@ufl.edu,
[email protected]fl.edu Abstract—Economic and operational advantages have led the the trustworthiness of modern electronic system. This threat supply chain of printed circuit boards (PCBs) to incorporate calls for effective countermeasures that can prevent, detect, various untrusted entities. Any of the untrusted entities are ca- and tolerate such attacks. While a vast amount of research pable of introducing malicious alterations to facilitate a functional failure or leakage of secret information during field operation. has explored the various facets of malicious circuits inside While researchers have been investigating the threat of malicious individual microelectronic components, a more complex attack modification within the scale of individual microelectronic com- vector that introduces board-level malicious functionalities has ponents, the possibility of a board-level malicious manipulation received little to no attention [2]. has essentially been unexplored. In the absence of standard Modeling the attack vector is a critical step towards assuring benchmarking solutions, prospective countermeasures for PCB trust assurance are likely to utilize homegrown representation of trust at the PCB-level. The construction and behavior of the attacks that undermines their evaluation and does not provide malicious circuits can be completely different depending on scope for comparison with other techniques. In this paper, we which entities in the PCB supply chain we assume to be have developed the first-ever benchmarking solution to facilitate untrusted.