Letters to the Editor J Med Genet: First Published As 10.1136/Jmg.37.5.382 on 1 May 2000

Total Page:16

File Type:pdf, Size:1020Kb

Letters to the Editor J Med Genet: First Published As 10.1136/Jmg.37.5.382 on 1 May 2000 376 Letters Letters to the Editor J Med Genet: first published as 10.1136/jmg.37.5.382 on 1 May 2000. Downloaded from J Med Genet 2000;37:376–377 Phosphorylase kinase deficient liver some 16, encodes the â subunit that is expressed in all tissues. PHKB mutations therefore cause autosomal reces- glycogenosis: progression to cirrhosis sive Phk deficiency of both liver and muscle, but liver symp- in infancy associated with PHKG2 toms predominate and the biochemical muscle involvement is often not clinically apparent. Ten diVerent mutations in mutations (H144Y and L225R) the PHKB gene have been identified in seven patients.8–10 PHKG2, also autosomal, encodes the testis/liver isoform of the catalytic ã subunit. PHKG2 mutations seem to be the EDITOR—Deficiency of phosphorylase kinase (Phk), a rarest variant with only five patients described to date, all of 11 12 regulatory protein kinase in glycogen metabolism, is the most them homozygous oVspring of consanguineous parents. frequent cause of hepatic glycogen storage disease (GSD). A genotype-phenotype correlation is emerging in liver Patients typically present as infants with hepatomegaly, Phk deficiency. The functional impact of PHKB mutations, growth retardation, and raised triglycerides, cholesterol, and both on residual enzyme activity and clinical condition, transaminases. Compared to other types of liver GSD, the appears to be mildest. In contrast, PHKG2 mutations seem condition is usually mild and its course is benign such that to concentrate at the opposite end of the spectrum of patients may even become asymptomatic as they grow up. severity with very low residual Phk activities, very high Hypoglycaemia and lactic acidosis, for example, are uncom- plasma lipids and transaminases, and other abnormalities mon in Phk deficiency in contrast to glucose-6-phosphatase that are uncommon in Phk deficiency, such as lactic acido- deficiency (GSD type I). Hepatic architecture typically sis, abnormal glucagon response, or hepatocellular ad- remains normal, unlike GSD III (debranching enzyme defi- enoma. Most strikingly, the only two published cases of ciency) in which hepatic fibrosis is common, and unlike GSD Phk deficiency who developed liver cirrhosis in infancy IV (branching enzyme deficiency) which usually progresses were both found to carry translation terminating mutations to cirrhosis in infancy. Only two infants with Phk deficiency in the PHKG2 gene.11 12 In the present study, we have iden- and cirrhosis have been reported. Development of fibrosis tified PHKG2 mutations in another patient with liver Phk and even cirrhosis was found in five older Japanese patients, deficiency and early cirrhosis, further substantiating that but it remains to be clarified whether this observation can be PHKG2 mutations are associated with a more severe phe- generalised and also applies to other ethnic groups.1–5 notype and particularly with a high risk of cirrhosis. Phk is a complex enzyme consisting of four diVerent A male infant, the first child of healthy, unrelated English subunits, (áâãä)4, and isoforms or splice variants exist for parents, presented with abdominal distension from 5 each subunit. This gives rise to genetic and phenotypic months, and three early morning episodes of eye rolling, heterogeneity of Phk deficiency.6 A muscle specific form of pallor, and clamminess at 7 months. Examination showed Phk deficiency is caused by mutations in the gene for the poor growth, muscle wasting, and hepatomegaly 11 cm http://jmg.bmj.com/ muscle isoform of the á subunit, PHKA1, which resides on below the costal margin. Abnormal findings included the long arm of the X chromosome, whereas liver Phk defi- low prefeed plasma glucose (0.5 mmol/l), raised plasma ciency can be caused by mutations in three genes: PHKA2, alanine aminotransferase (587, normal <45 U/l), aspartate PHKB, and PHKG2. PHKA2 encodes the liver isoform of aminotransferase (>2000, normal <45 U/l), and the á subunit. It is located on the short arm of the X ã-glutamyltranspeptidase (2150, normal <40 U/l), and chromosome and therefore involved in most (male) cases of raised plasma cholesterol (18.4, normal 2.5-4.4 mmol/l) liver Phk deficiency.7 PHKB, located on human chromo- and triglycerides (9.3, normal 1.5-1.8 mmol/l). Phk activity on September 27, 2021 by guest. Protected copyright. GACTGTTCTCNATGCCAA A CA 230 * 240 Hum PHKG2 V S F L H A N N I Rat PHKG2 V N F L H V N N I 144 Hum PHKG1 I C T L H K L N I Paternal S F L H A N N Rat PHKG1 V C T L H K L N I mutation AGC TTT CTC CAT GCC AAC AAC Rbt PHKG1 I C A L H K L N I TAT Bov cAPKα F E Y L H S L D L Y Bov PKCα L F F L H K R G I Yea CDC28 I A Y C H S H R I TTGGGGG TTCACACT TCCCC T 250 * 260 Hum PHKG2 I L F T L L A G S Rat PHKG2 I L F T L L A G S 225 Hum PHKG1 I M Y T L L A G S Maternal L F T L L A G Rat PHKG1 I M Y T L L A G S mutation TTG TTC ACA CTC CTG GCT GGC Rbt PHKG1 I M Y T L L A G S CGC Bov cAPKα L I Y E M A A G Y R Bov PKCα L L Y E M L A G Q Yea CDC28 I F A E M C N R K Figure 1 PHKG2 missense mutations in a patient with Phk deficiency and liver cirrhosis. Sequencer tracings are shown on the left, with heterozygous sequence positions marked by asterisks. On the right, the high conservation of the mutated amino acids is illustrated by alignment of the corresponding sequence regions from the testis/liver (PHKG2) and muscle (PHKG1) isoforms of the Phk ã subunit from human, rat, and rabbit, and from bovine protein kinase A (á isoform), bovine protein kinase C (á isoform), and yeast CDC28 kinase as examples of other serine/threonine kinases. See refs 11 and 13 for sequence references and alignment of additional protein kinase sequences. Letters 377 was 1.6 U/g Hb (normal, 6-30) in erythrocytes and <1 U/g biochemical abnormalities. Missense as well as truncating wet weight (normal, >20) in liver. Hepatic branching and mutations are found among both the cirrhotic and the J Med Genet: first published as 10.1136/jmg.37.5.382 on 1 May 2000. Downloaded from debranching enzyme activities were normal. Liver histology non-cirrhotic patients, so that no obvious correlation showed fibrous expansion of portal tracts with portal-portal between mutation severity and cirrhosis is evident. These bridging and gross parenchymal glycogen deposition with observations suggest that patients with PHKG2 mutations minimal fat. Overnight nasogastric feeds and two-hourly have a much higher risk of severe liver disease than those with daytime feeds were necessary to prevent hypoglycaemia and PHKA2 or PHKB mutations. The malignant potential of cir- lactic acidosis. Firm irregular hepatomegaly and raised rhosis in this small subgroup is unknown. plasma transaminases persisted. Repeat liver biopsy at 3 We thank Dr S K Hanumara for referring the case and Dr S Variend for histol- years showed that glycogen deposition had diminished but ogy. This work was supported by grants from the Deutsche Forschungsgemein- cirrhosis was present, with broad bands of interportal fibro- schaft and the Fonds der Chemischen Industrie. sis encircling parenchymal nodules. BARBARA BURWINKEL* Genomic DNA was purified from a blood sample and M STUART TANNER† PHKG2 MANFRED W KILIMANN* the gene amplified in four segments and analysed *Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 by direct sequencing in both directions, as described Bochum, Germany previously.12 The patient was found to be heterozygous for †The SheYeld Children’s Hospital, University of SheYeld, Division of two single nucleotide replacements: a C to T transition Child Health, SheYeld S10 2TH, UK replacing histidine 144 with tyrosine, andaTtoG Correspondence to: Dr Kilimann, [email protected] transversion replacing leucine 225 with arginine (fig 1). 1 Chen YT, Burchell A. Glycogen storage diseases. In: Scriver CR, Beaudet H144 is not only conserved in both Phk ã subunit isoforms AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited dis- from several species, but also in the catalytic domains of ease. 7th ed. Vol 1. New York: McGraw-Hill, 1995:935-65. nearly all serine/threonine protein kinases, where it resides 2 Willems PJ, Gerver WJM, Berger R, Fernandes J. The natural history of liver 13 glycogenosis due to phosphorylase kinase deficiency: a longitudinal study in subdomain VI A. Similarly, the counterparts of L225 in of 41 patients. Eur J Pediatr 1990;149:268-71. 3 Shiomi S, Saeki Y, Kim K, et al. A female case of type VIII glycogenosis who more than 100 protein kinase sequences (subdomain IX) developed cirrhosis of the liver and hepatocellular tumor. Gastroenterol Jpn are most frequently leucines, methionines, or other hydro- 1989;24:711-14. 4 Kagalwalla AF, Kagalwalla YA, Al Ajaji S, Gorka W, Ali MA. Phosphorylase phobic or uncharged amino acids, but never charged resi- J Pediatr 13 b kinase deficiency glycogenosis with cirrhosis of the liver. 1995; dues (fig 1). Analysis of parental DNA showed that the 127:602-5. 5 Aikawa J, Ohura T, Iinuma K, Narisawa K. Management of phosphorylase H144Y allele had been inherited from the father and the kinase deficiency - outcome and control of phosphorylase kinase deficiency. L225R allele from the mother, together accounting for the J Inherit Metab Dis 1997;20:84.
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Analysis of the Human Serum Proteome
    Cedarville University DigitalCommons@Cedarville Pharmaceutical Sciences Faculty Publications Department of Pharmaceutical Sciences 6-2004 Analysis of the Human Serum Proteome King C. Chan David A. Lucas Denise Hise Carl F. Schaefer Zhen Xiao See next page for additional authors Follow this and additional works at: https://digitalcommons.cedarville.edu/ pharmaceutical_sciences_publications Part of the Pharmacy and Pharmaceutical Sciences Commons This Article is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Publications by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact [email protected]. Authors King C. Chan, David A. Lucas, Denise Hise, Carl F. Schaefer, Zhen Xiao, George M. Janini, Kenneth H. Buetow, Haleem J. Issaq, Timothy D. Veenstra, and Thomas P. Conrads Clinical Proteomics Journal Copyright ©Humana Press Inc. All rights of any nature whatsoever are reserved. ISSN 1542-6416/04/01:101–225/$25.00 Serum/Plasma Proteome Analysis of the Human Serum Proteome King C. Chan,1,† David A. Lucas,1,† Denise Hise,2 Carl F. Schaefer,2 Zhen Xiao,1 George M. Janini,1 Kenneth H. Buetow,2 Haleem J. Issaq,1 Timothy D.Veenstra,1 and Thomas P. Conrads1,* 1Laboratory of Proteomics and Analytical Technologies, National Cancer Institute at Frederick, SAIC-Frederick, Inc, PO Box B, Frederick, MD 21702 2Center for Bioinformatics, National Cancer Institute, Bethesda, MD 20892 †These authors contributed equally to this work. each of which was analyzed by microcapillary Abstract reversed-phase liquid chromatography coupled Changes in serum proteins that signal online with MS/MS analysis.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • PHKG2, Active (SRP5062)
    PHKG2, active, GST tagged, human PRECISIOÒ Kinase recombinant, expressed in Sf9 cells Catalog Number SRP5062 Storage Temperature –70°C Synonyms: GSD9C Figure 1. SDS-PAGE Gel of Typical Lot Product Description 70–95% (densitometry) PHKG2 is the hepatic and testis isoform of the gamma subunit of phosphorylase kinase. PHKG2 gene contains 10 exons and spans 9.5 kb and maps to chromosome 16p12.1-p11.2.1 Deficiency of PHK, a regulatory enzyme of glycogen metabolism, is responsible for 25% of all cases of glycogen storage disease and is genetically and clinically heterogeneous. Mutations in the PHKG2 gene lead to autosomal liver-specific PHK deficiency (glycogen storage disease IXc) and an increased risk of cirrhosis, and at least 11 PHKG2 mutations have been identified to date.2 Figure 2. Specific Activity of Typical Lot Recombinant, full-length, human PHKG2 was 59–81 nmole/min/mg expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is NM_000294. Recombinant protein stored in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.25 mM DTT, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol. Molecular mass: ~70 kDa Purity: 70–95% (SDS-PAGE, see Figure 1) Specific Activity: 59–81 nmole/min/mg (see Figure 2) Precautions and Disclaimer Procedure This product is for R&D use only, not for drug, Preparation Instructions household, or other uses. Please consult the Material Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM Safety Data Sheet for information regarding hazards glycerol 2-phosphate, 25 mM MgCl2, 5 mM EGTA, and and safe handling practices.
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Prognostic and Immune Implications of a Novel Ferroptosis-Related Ten-Gene Signature in Lung Adenocarcinoma
    1058 Original Article Page 1 of 26 Prognostic and immune implications of a novel ferroptosis-related ten-gene signature in lung adenocarcinoma Chao Ma1,2^, Feng Li1,3, Huan Luo1 1Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; 2Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany; 3Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Berlin, Germany Contributions: (I) Conception and design: C Ma; (II) Administrative support: C Ma; (III) Provision of study materials or patients: C Ma, F Li; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: C Ma; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chao Ma. Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany. Email: [email protected]. Background: Lung cancer has been the focus of attention for many researchers in recent years due to its leading contribution to cancer-related death worldwide, with lung adenocarcinoma (LUAD) being the most common histological type. Ferroptosis, a novel iron-dependent form of regulated cell death, can be induced by sorafenib. Emerging evidence shows that triggering ferroptosis has potential as a cancer therapy. This work aimed to build a ferroptosis-related gene signature for predicting the outcome of LUAD. Methods: The TCGA-LUAD dataset was set as the training cohort, and the GSE72094 and GSE68465 datasets were set as the validation cohorts.
    [Show full text]
  • Full Disclosure Forms
    Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS Xia Tian, PhD* ABSTRACT * Wen-Chen Liang, MD Objective: To establish and evaluate the effectiveness of a comprehensive next-generation * Yanming Feng, PhD sequencing (NGS) approach to simultaneously analyze all genes known to be responsible for Jing Wang, MD the most clinically and genetically heterogeneous neuromuscular diseases (NMDs) involving spi- Victor Wei Zhang, PhD nal motoneurons, neuromuscular junctions, nerves, and muscles. Chih-Hung Chou, MS Methods: All coding exons and at least 20 bp of flanking intronic sequences of 236 genes causing Hsien-Da Huang, PhD NMDs were enriched by using SeqCap EZ solution-based capture and enrichment method fol- Ching Wan Lam, PhD lowed by massively parallel sequencing on Illumina HiSeq2000. Ya-Yun Hsu, PhD ; 3 Thy-Sheng Lin, MD Results: The target gene capture/deep sequencing provides an average coverage of 1,000 per Wan-Tzu Chen, MS nucleotide. Thirty-five unrelated NMD families (38 patients) with clinical and/or muscle pathologic Lee-Jun Wong, PhD diagnoses but without identified causative genetic defects were analyzed. Deleterious mutations Yuh-Jyh Jong, MD were found in 29 families (83%). Definitive causative mutations were identified in 21 families (60%) and likely diagnoses were established in 8 families (23%). Six families were left without diagnosis due to uncertainty in phenotype/genotype correlation and/or unidentified causative Correspondence to genes. Using this comprehensive panel, we not only identified mutations in expected genes but Dr. Wong: also expanded phenotype/genotype among different subcategories of NMDs. [email protected] or Dr. Jong: Conclusions: Target gene capture/deep sequencing approach can greatly improve the genetic [email protected] diagnosis of NMDs.
    [Show full text]
  • Cyclin F-Chk1 Synthetic Lethality Mediated by E2F1 Degradation
    bioRxiv preprint doi: https://doi.org/10.1101/509810; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin F-Chk1 synthetic lethality mediated by E2F1 degradation Kamila Burdova1, Hongbin Yang1, Roberta Faedda1, Samuel Hume1, Daniel Ebner2, Benedikt M Kessler2, Iolanda Vendrell1,2, David H Drewry3, Carrow I Wells3, Stephanie B Hatch2, Vincenzo D’Angiolella1* 1Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK 2Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK 3Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America * Corresponding Author: [email protected] Summary Cyclins are central engines of cell cycle progression when partnered with Cyclin Dependent Kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but forms an E3 ubiquitin ligase, assembling through the F-box domain, an Skp1-Cul1-F-box (SCF) module. Although multiple substrates of cyclin F have been identified the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging cells with more than 200 kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss.
    [Show full text]
  • Inhibition of ERK 1/2 Kinases Prevents Tendon Matrix Breakdown Ulrich Blache1,2,3, Stefania L
    www.nature.com/scientificreports OPEN Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown Ulrich Blache1,2,3, Stefania L. Wunderli1,2,3, Amro A. Hussien1,2, Tino Stauber1,2, Gabriel Flückiger1,2, Maja Bollhalder1,2, Barbara Niederöst1,2, Sandro F. Fucentese1 & Jess G. Snedeker1,2* Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fbrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants. Tendon is a musculoskeletal tissue that transmits muscle force to bone. To accomplish its biomechanical function, tendon tissues adopt a specialized extracellular matrix (ECM) structure1. Te load-bearing tendon compart- ment consists of highly aligned collagen-rich fascicles that are interspersed with tendon stromal cells. Tendon is a mechanosensitive tissue whereby physiological mechanical loading is vital for maintaining tendon archi- tecture and homeostasis2. Mechanical unloading of the tissue, for instance following tendon rupture or more localized micro trauma, leads to proteolytic breakdown of the tissue with severe deterioration of both structural and mechanical properties3–5.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,178,317 B2 Roberts Et Al
    US008178317B2 (12) United States Patent (10) Patent No.: US 8,178,317 B2 Roberts et al. (45) Date of Patent: May 15, 2012 (54) COMPOSITIONS AND METHODS FOR Mende, I. et al., “Oncogenic Transformation Induced by Membrane IDENTIFYING TRANSFORMING AND Targeted AKT2 and AKT3.” Oncogene 20:4419-4423 (2001). TUMIOR SUPPRESSOR GENES Invitation to Pay Additional Fees and Partial International Search Report dated Oct. 14, 2008 from PCT/US2008/062230. (75) Inventors: Thomas M. Roberts, Cambridge, MA Bamford et al., “The COSMIC (Catalogue of Somatic Mutations in (US); Jean Zhao, Brookline, MA (US); Cancer) database and website.” British Journal of Cancer, 91:355 David E. Hill, Arlington, MA (US); 358 (2004). Bartkova et al., “Cyclin D1 protein expression and function in human William C. Hahn, Newton, MA (US); breast cancer.” Int. J. Cancer, 57(3):353-361 (1994). Jesse Boehm, Jamaica Plain, MA (US) Berger et al., “Androgen-Induced Differentiation and Tumorigenicity of Human Prostate Epithelial Cells.” Cancer Research, 64:8867-8875 (73) Assignee: Dana-Farber Cancer Institute, Inc., (2004). Boston, MA (US) Boehm et al., “Transformation of Human and Murine Fibroblasts without Viral Oncoproteins.” Molecular and Cellular Biology, *) Notice: Subject to anyy disclaimer, the term of this 25(15):6464-6474 (2005). patent is extended or adjusted under 35 Brown et al., "Control of IkappaB-alphaproteolysis by site-specific, U.S.C. 154(b) by 233 days. signal-induced phosphorylation.” Science, 267: 1485-1488 (1995). Brunet et al., “Constitutively active mutants of MAP kinase kinase (21) Appl. No.: 12/150,941 (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts.” Oncogene, 9(11):3379-3387 (1994).
    [Show full text]
  • Cell Culture-Based Profiling Across Mammals Reveals DNA Repair And
    1 Cell culture-based profiling across mammals reveals 2 DNA repair and metabolism as determinants of 3 species longevity 4 5 Siming Ma1, Akhil Upneja1, Andrzej Galecki2,3, Yi-Miau Tsai2, Charles F. Burant4, Sasha 6 Raskind4, Quanwei Zhang5, Zhengdong D. Zhang5, Andrei Seluanov6, Vera Gorbunova6, 7 Clary B. Clish7, Richard A. Miller2, Vadim N. Gladyshev1* 8 9 1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard 10 Medical School, Boston, MA, 02115, USA 11 2 Department of Pathology and Geriatrics Center, University of Michigan Medical School, 12 Ann Arbor, MI 48109, USA 13 3 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, 14 MI 48109, USA 15 4 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 16 48109, USA 17 5 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10128, USA 18 6 Department of Biology, University of Rochester, Rochester, NY 14627, USA 19 7 Broad Institute, Cambridge, MA 02142, US 20 21 * corresponding author: Vadim N. Gladyshev ([email protected]) 22 ABSTRACT 23 Mammalian lifespan differs by >100-fold, but the mechanisms associated with such 24 longevity differences are not understood. Here, we conducted a study on primary skin 25 fibroblasts isolated from 16 species of mammals and maintained under identical cell culture 26 conditions. We developed a pipeline for obtaining species-specific ortholog sequences, 27 profiled gene expression by RNA-seq and small molecules by metabolite profiling, and 28 identified genes and metabolites correlating with species longevity. Cells from longer-lived 29 species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated 30 proteolysis and protein transport, and showed high levels of amino acids but low levels of 31 lysophosphatidylcholine and lysophosphatidylethanolamine.
    [Show full text]
  • Targeted MS Quantitation Assays for Signal Transduction Protein Pathways
    Targeted MS quantitation assays for signal transduction protein pathways Paul Haney R&D Platform Manager Thermo Scientific Protein Research Products Rockford, IL Why Targeted Quantitative Proteomics via Mass Spec? . Measure protein abundance and protein isoforms (e.g. splice variants, PTMs) without the need for antibodies . Avoid immuno-based cross- reactivity during multiplexing. Validate relative quantitation data from discovery proteomic experiments 2 How Do You Select Peptides for Targeted MS Assays? List of Proteins Spectral library Discovery data repositories In silico prediction Pinpoint 1.2 Hypothesis Experimental List of target peptides and transitions 3 How Do You Select Peptides for Targeted MS Assays? List of Proteins Spectral library Discovery data repositories In silico prediction Pinpoint 1.2 Hypothesis Experimental Validation Assay results List of target peptides and transitions 4 Tools for Target Peptide Identification and Scheduling . Active-site probes for enzyme subclass enrichment . Rapid recombinant heavy protein expression using human cell-free extracts . Peptide retention time calibration mixture for chromatography QC and targeted method 100 80 60 acquisition scheduling Intensity 40 20 0 5 10 15 20 25 30 5 Tools for Target Peptide Identification and Scheduling . Active-site probes for enzyme subclass enrichment . Rapid recombinant heavy protein expression using human cell-free extracts • Stergachis, A. & MacCoss, M. (2011) Nature Methods (submitted) . Peptide retention time calibration mixture for 100 80 chromatography
    [Show full text]