46 CFR Ch. I (10–1–00 Edition) § 52.01–115

Total Page:16

File Type:pdf, Size:1020Kb

46 CFR Ch. I (10–1–00 Edition) § 52.01–115 § 52.01±115 46 CFR Ch. I (10±1±00 Edition) under all normal and emergency condi- ceed 250 pounds per square inch, three tions. The secondary indicator may test cocks attached directly to the consist of a gage glass, or other accept- head or shell of a boiler may serve as able device. Where the allowance pres- the secondary water level indicator. sure exceeds 1724 kPa (250 psi), the gage (2) See paragraph (d) of this section glasses shall be of the flat type instead for restrictions on cock connections. of the common tubular type. (f) Pressure gages (modifies PG±60.6). (2) Gage glasses shall be in contin- Each double-ended boiler shall be fitted uous operation while the boiler is with two steam gages, one on either steaming. end on the boiler. (3) Double-ended firetube boilers (g) Salinometer cocks. In vessels oper- shall be equipped as specified in this ating in salt water, each boiler shall be paragraph and paragraph (e) of this equipped with a salinometer cock or section except that the required water valve which shall be fitted directly to level indicators shall be installed on the boiler in a convenient position. each end of the boiler. They shall not be attached to the (4) Externally fired flue boilers, such water gage or water column. as are used on central western river (h) High-water-level alarm. Each vessels, shall be equipped as specified watertube boiler for propulsion must in paragraphs (b) (1) through (3) of this have an audible and a visible high- section except that float gages may be water-level alarm. The alarm indica- substituted for gage glasses. tors must be located where the boiler is (c) Water columns (modifies PG±60.2). controlled. The use of water columns is generally [CG FR 68±82, 33 FR 18815, Dec. 18, 1968, as limited to firetube boilers. Water col- amended by CGD 81±79, 50 FR 9433, Mar. 8, umn installations shall be close hauled 1985; CGD 83±043, 60 FR 24772, May 10, 1995] to minimize the effect of ship motion on water level indication. When water § 52.01±115 Feedwater supply (modifies columns are provided they shall be PG±61). fitted directly to the heads or shells of Boiler feedwater supply must meet boilers or drums by 1 inch minimum the requirements of PG±61 of the ASME size pipes with shutoff valves attached Code and § 56.50±30 of this subchapter. directly to the boiler or drums, or if [CGD 81±79, 50 FR 9433, Mar. 8, 1985] necessary, connected thereto by a dis- tance piece both at the top and bottom § 52.01±120 Safety valves and safety re- of the water columns. Shutoff valves lief valves (modifies PG±67 through used in the pipe connections between PG±73). the boiler and water column or be- (a)(1) Boiler safety valves and safety tween the boiler and the shutoff valves relief valves must be as indicated in required by PG±60.6 of the ASME Code PG±67 through PG±73 of the ASME for gage glasses, shall be locked or Code except as noted otherwise in this sealed open. Water column piping shall section. not be fitted inside the uptake, the (2) A safety valve must: smoke box, or the casing. Water col- (i) Be stamped in accordance with umns shall be fitted with suitable PG±110 of the ASME Code; drains. Cast iron fittings are not per- (ii) Have its capacity certified by the mitted. National Board of Boiler and Pressure (d) Gage glass connections (modifies Vessel Inspectors; PG±60.3). Gage glasses and gage cocks (iii) Have a drain opening tapped for shall be connected directly to the head not less than 6mm (1¤4 in.) NPS; and or shell of a boiler as indicated in para- (iv) Not have threaded inlets for graph (b)(1) of this section. When water valves larger than 51mm (2 in.) NPS. columns are authorized, connections to (3) On river steam vessels whose boil- the columns may be made provided a ers are connected in batteries without close hauled arrangement is utilized so means of isolating one boiler from an- that the effect of ship roll on the water other, each battery of boilers shall be level indication is minimized. treated as a single boiler and equipped (e) Gage cocks (modifies PG±60.4). (1) with not less than two safety valves of When the steam pressure does not ex- equal size. 126 VerDate 11<MAY>2000 10:41 Oct 18, 2000 Jkt 190175 PO 00000 Frm 00126 Fmt 8010 Sfmt 8010 Y:\SGML\190175T.XXX pfrm08 PsN: 190175T Coast Guard, DOT § 52.01±120 (4) (Modifies PG±70.) The total rated 51mm (2 inch) gage length. Nonmetallic relieving capacity of drum and super- material may be used only for gaskets heater safety valves as certified by the and packing. valve manufacturer shall not be less (b)(1) (Modifies PG±68.) Superheater than the maximum generating capac- safety valves shall be as indicated in ity of the boiler which shall be deter- PG±68 of the ASME Code except as mined and certified by the boiler man- noted otherwise in this paragraph. ufacturer. This capacity shall be in (2) The setting of the superheater compliance with PG±70 of the ASME safety valve shall not exceed the design Code. pressure of the superheater outlet (5) In the event the maximum steam flange or the main steam piping beyond generating capacity of the boiler is in- the superheater. To prevent damage to creased by any means, the relieving ca- the superheater, the drum safety valve pacity of the safety valves shall be shall be set at a pressure not less than checked by an inspector, and, if deter- that of the superheater safety valve mined to be necessary, valves of in- setting plus 5 pounds minimum plus creased relieving capacity shall be in- approximately the normal load pres- stalled. sure drop through the superheater and (6) (Modifies PG±67). Drum safety associated piping, including the con- valves shall be set to relieve at a pres- trolled desuperheater if fitted. See also sure not in excess of that allowed by § 52.01±95(b) (1). the Certificate of Inspection. Where for (3) Drum pilot actuated superheater any reason this is lower than the pres- safety valves are permitted provided sure for which the boiler was orginially the setting of the pilot valve and super- designed and the revised safety valve heater safety valve is such that the capacity cannot be recomputed and superheater safety valve will open be- certified by the valve manufacturer, fore the drum safety valve. one of the tests described in PG±70(3) of the ASME Code shall be conducted in (c)(1) (Modifies PG±71.) Safety valves the presence of the Inspector to insure shall be installed as indicated in PG±71 that the relieving capacity is sufficient of the ASME Code except as noted oth- at the lower pressure. erwise in this paragraph. (7) On new installations the safety (2) The final setting of boiler safety valve nominal size for propulsion boil- valves shall be checked and adjusted ers and superheaters must not be less under steam pressure and, if possible, than 38mm (11¤2 in.) nor more than while the boiler is on the line and the 102mm (4 in.). Safety valves 38mm (11¤2 steam is at operating temperatures, in in.) to 114mm (41¤2 in.) may be used for the presence of and to the satisfaction replacements on existing boilers. The of a marine inspector who, upon ac- safety valve size for auxiliary boilers ceptance, shall seal the valves. This must be between 19mm (3¤4 in.) and regulation applies to both drum and 102mm (4 in.) NPS. The nominal size of superheater safety valves of all boilers. a safety valve is the nominal diameter (3) The safety valve body drains re- (as defined in 56.07±5(b)) of the inlet quired by PG±71 of the ASME Code opening. shall be run as directly as possible (8) Lever or weighted safety valves from the body of each boiler safety now installed may be continued in use valve, or the drain from each boiler and may be repaired, but when renew- safety valve may be led to an inde- als are necessary, lever or weighted pendent header common only to boiler safety valves shall not be used. All safety valve drains. No valves of any such replacements shall conform to the type shall be installed in the leakoff requirements of this section. from drains or drain headers and they (9) Gags or clamps for holding the shall be led to suitable locations to safety valve disk on its seat shall be avoid hazard to personnel. carried on board the vessel at all times. (d)(1) (Modifies PG±72.) The operation (10) (Modifies PG±73.2). Cast iron may of safety valves shall be as indicated in be used only for caps and lifting bars. PG±72 of the ASME Code except as When used for these parts, the elon- noted in paragraph (d)(2) of this sec- gation must be at least 5 percent in tion. 127 VerDate 11<MAY>2000 10:41 Oct 18, 2000 Jkt 190175 PO 00000 Frm 00127 Fmt 8010 Sfmt 8010 Y:\SGML\190175T.XXX pfrm08 PsN: 190175T § 52.01±130 46 CFR Ch. I (10±1±00 Edition) (2) (Modifies PG±73). The lifting de- (6) All oil-burning boilers shall be vice required by PG±73.1.3 of the ASME provided with oiltight drip pans under Code shall be fitted with suitable re- the burners and elsewhere as necessary lieving gear so arranged that the con- to prevent oil draining into the bilges.
Recommended publications
  • Establishing Relieving Capacities
    Establishing Relieving Capacities Prepared for Chief’s meeting October 9, 2019 By Joseph F. Ball, P. E. Overview of Session • Review of Section IV Pressure Relief Capacity Requirements • ASME Requirements • NBIC Installation Requirements • Establishment of Relieving Capacity for Section IV Pressure Relief Valves Section IV Capacity Requirements The Basics: Overpressure protection requirements are defined by boiler manufacturer. Nameplate shall include: (HG-530.1(a)(3)) Safety or safety relief valve capacity (minimum) as determined according to HG-400.1(d) and HG-400.2(e) Heating area must be marked Section IV Capacity Requirements The Basics: Same for cast iron or aluminum (HG-530.2(c)(3)) – depends upon number of sections Section IV Capacity Requirements The Basics: Modular Boilers • Each module has its own nameplate with capacity required for that module • Aggregate capacity (and heating area) is applied to a single nameplate for the combined unit Section IV Capacity Requirements The Basics: HG-400.1 (d) The minimum valve capacity in pounds per hour shall be determined by dividing the maximum Btu/hr (kW) output at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646). In every case, the requirement of (e) shall be met. (e) The safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed, and operated at maximum capacity, the pressure cannot rise more than 5 psi (35 kPa) above the maximum allowable working pressure. Section IV Capacity Requirements The Basics: HG-400.2 (e) The required steam-relieving capacity, in pounds per hour (kg/hr), of the pressure-relieving device or devices on a boiler shall be determined by dividing the maximum output in Btu/hr (kW) at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646).
    [Show full text]
  • Steamboating Guide Edition 2 2010
    Steamboating SampleGuide Pages Second Edition Steamboating Guide Edition 2 2010 Edited by Roger Calvert and Rob van Es The contributors and editors of this publication have made every effort to ensure the accuracy and relevance of the data presented and the validity and appropriateness of the recommendations made. It is, however, ultimately the responsibility of the owner of a boat to check the data and take the final decisions, in the context of the proposed design. If necessary, appropriate professional advice should be sought. Neither the contributors, the editors, nor the SBA can accept responsibility for any direct or indirect consequences arising from the use of the data or from following the recommendationsSample of this publication. Pages Copying of parts or the whole of this document by members of the SBA is permitted, subject to the terms published on the SBA web site. Otherwise, copying is not permitted without the permission of the SBA, except as allowed under copyright law. Table of Contents Preface Section A – Introduction 1 Hulls 1-1 2 Boiler Types 2-1 3 Engine Types 3-1 4 Fuels 4-1 Section B – Steamboat Operations 5 Boiler Fittings 5-1 6 Steam Plant Installation 6-1 7 Boiler Operation and Maintenance 7-1 8 Steam Ancillaries 8-1 9 Boat Handling Advice 9-1 10 Boiler Inspection and Testing 10-1 11 Trailers and Towing 11-1 Section C – Technical 12 Propulsion 12-1 13 Valve Setting 13-1 14 Data and Performance 14-1 15 Boiler Design Considerations 15-1 16 Workshop Techniques 16-1 Glossary 17-1 Index 18-1 Sample Pages Preface The aims and objects of the Steam Boat Association are: (i) To foster and encourage steam boating and the building, development, preservation and restoration of steam boats and steam machinery, by all possible means.
    [Show full text]
  • Westinghouse Technology 7.1 Main and Auxiliary Steam Systems
    Westinghouse Technology Systems Manual Section 7.1 Main and Auxiliary Steam Systems TABLE OF CONTENTS 7.1MAIN AND AUXILIARY STEAM SYSTEMS ................................................... 7.1-1 7.1.1 Introduction .......................................................................................... 7.1-1 7.1.2 Main Steam System Description ......................................................... 7.1-1 7.1.2.1 Safety Considerations ............................................................ 7.1-2 7.1.2.2 Accident Considerations ........................................................ 7.1-3 7.1.3 Main Steam System Component Descriptions .................................... 7.1-4 7.1.3.1 Flow Restrictors ..................................................................... 7.1-4 7.1.3.2 Main Steam Instrumentation .................................................. 7.1-4 7.1.3.3 Power-Operated Relief Valves ............................................... 7.1-5 7.1.3.4 Steam Generator Safety Valves ............................................ 7.1-6 7.1.3.5 AFW Pump Steam Supplies .................................................. 7.1-6 7.1.3.6 High Pressure Drains ............................................................. 7.1-6 7.1.3.7 Main Steam Isolation Valves .................................................. 7.1-7 7.1.3.8 Main Steam Check Valves ..................................................... 7.1-8 7.1.3.9 MSIV Bypass Valves .............................................................. 7.1-8 7.1.4 Auxiliary Steam System
    [Show full text]
  • Hydraulic Valve Remote Control System
    HYDRAULIC VALVE REMOTE CONTROL SYSTEM OVERVIEW Nordic Flow Control’s compact design for our Hydraulic Valve Remote Control Systems does not compromise on power. Our systems operate at a higher torque level even with our smaller actuators. Submerged applications are available, and maintenance is possible even during operation. By having a hand pump in a deck box with solenoid valves, manual operations are now possible. Our Hydraulic Valve Remote Control Systems are tried and tested in the harshest conditions. The system consists of the hydraulic actuator, a power unit, solenoid valve cabinet, and the control station with operating system. Our actuators and control systems are able to match and operate valves with no limitations. BENEFITS • Able to operate bigger size valves with smaller actuators • Able to use for submerged applications • Cost efficient • Reliable • Able to operate at hazardous areas • Simplicity of design and control Nordic Flow Control Valve Remote Control Systems 1 COMPONENTS ACTUATORS Nordic Flow Control’s actuators are manufactured using sophisticated machinery in our own production plant. They convert hydraulic energy directly into a mechanical rotating movement by using the rack and pinion principle, elimi- nating cost from intensive servicing, maintenance and the sensitivity of transmission elements. Our actuators are created for durability, performance and cost effectiveness. Our new NRA series actuators are now more compact and provide higher torque at even smaller sizes. They have a longer life span, with higher efficiency. Polymer bearings for smaller actuators and ball bearings for bigger actuators are used to reduce friction between the parts. Mounting is according to ISO5211 standards, but can be customised to meet other requirements.
    [Show full text]
  • NBIC Pressure Relief Device (PRD) Inspection Guide
    NBIC Pressure Relief Device (PRD) Inspection Guide This guide provides a basis for NBIC Inspectors use in reviewing Pressure Relief Devices (PRD’s) for compliance with the National Board Inspection Code (NBIC). It is only intended to provide general guidance, and must be used in conjunction with NBIC, Part 2 for specific details of inspection. 1. Description and Overview Pressure relief devices are used to provide a means of venting excess pressure which could rupture a boiler or pressure vessel. A pressure relief device is the last line of defense for safety. If all other safety devices or operating controls fail, the pressure relief device must be capable of venting excess pressure. 2. Types of Devices There are many types of pressure relief devices available for use in the boiler and pressure vessel industry. This inspector guide will address the most common devices found on boilers and pressure vessels. Virtually all jurisdictions require a pressure relief device to be manufactured and certified in accordance with the ASME Code in addition to being capacity certified by the National Board. The most common types of pressure relief devices are: Pressure Relief Valve – A pressure relief device designed for emergency or abnormal over pressure conditions and designed to reclose after the pressure has been reduced. Safety Valve – This device is typically used for steam or vapor service. It operates automatically with a full-opening pop action and recloses when the pressure drops to a value consistent with the blowdown requirements prescribed by the applicable governing code or standard. Relief Valve – This device is typically used for liquid service.
    [Show full text]
  • BASIS SAFETY CONTROLS for HOT WATER and LOW-PRESSURE STEAM BOILERS By: Tom Vana, Factory Representative, Mcdonnell & Miller, Inc
    Service Application Manual SAM Chapter 630-36 Section 20 BASIS SAFETY CONTROLS FOR HOT WATER AND LOW-PRESSURE STEAM BOILERS By: Tom Vana, Factory Representative, McDonnell & Miller, Inc. HOT WATER SPACE HEATING BOILERS SAFTETY RELIEF VALVES Good engineering tells us that every hot water boiler must have a safety relief valve that will keep the pressure at or below the maximum allowable working pressure of the boiler. But until recently the methods of accomplishing this objective were not clearly understood. Figure 70F51A shows one method of attempting to provide protection against over-pressure which is unsafe for these reasons: 1. The relief valve does not comply with the ASME Boiler code requirements. 2. Its capacity is unknown. 3. It is installed in the wrong location. 4. It can inadvertently be isolated from the boiler due to lime or scale build-up in boiler feed line. 5. The function of a relief valve has nothing in common with a pressure reducing type fill valve. A combination of the two units is based on price consideration—not performance. The first basic step in providing correct safety control for a hot water boiler is to make sure that an ASME relief valve is installed. The ASME Code states: “Every hot water heating boiler shall have at least one officially rated pressure relief valve set to relieve at or below the maximum allowable working pressure of the boiler… Relief valve shall be connected to the Copyright © 1966, 2009, By Refrigeration Service Engineers Society. -1- top of boilers with the spindle vertical if possible…. No shutoff of any description shall be placed between the relief valve and the boiler, nor on the discharge pipe between such valve and the atmosphere.” Figure 70F51B shows the correct and safe installation of the relief valve.
    [Show full text]
  • Hackworth Family Archive
    Hackworth Family Archive A cataloguing project made possible by the National Cataloguing Grants Programme for Archives Science Museum Group 1 Description of Entire Archive: HACK (fonds level description) Title Hackworth Family Archive Fonds reference code GB 0756 HACK Dates 1810’s-1980’s Extent & Medium of the unit of the 1036 letters with accompanying letters and associated documents, 151 pieces of printed material and printed images, unit of description 13 volumes, 6 drawings, 4 large items Name of creator s Hackworth Family Administrative/Biographical Hackworth, Timothy (b 1786 – d 1850), Railway Engineer was an early railway pioneer who worked for the Stockton History and Darlington Railway Company and had his own engineering works Soho Works, in Shildon, County Durham. He married and had eight children and was a converted Wesleyan Methodist. He manufactured and designed locomotives and other engines and worked with other significant railway individuals of the time, for example George and Robert Stephenson. He was responsible for manufacturing the first locomotive for Russia and British North America. It has been debated historically up to the present day whether Hackworth gained enough recognition for his work. Proponents of Hackworth have suggested that he invented of the ‘blast pipe’ which led to the success of locomotives over other forms of rail transport. His sons other relatives went on to be engineers. His eldest son, John Wesley Hackworth did a lot of work to promote his fathers memory after he died. His daughters, friends, grandchildren, great-grandchildren and ancestors to this day have worked to try and gain him a prominent place in railway history.
    [Show full text]
  • Pentair Pressure Relief Valve Engineering Handbook Anderson Greenwood, Crosby and Varec Products
    Pentair Pressure Relief Valve Engineering Handbook Anderson Greenwood, Crosby and Varec Products VALVES & CONTROLS Pentair Pressure Relief Valve Engineering Handbook Forward Technical Publication No. TP-V300 Copyright © 2012 Pentair Valves & Controls. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without written permission. Pentair Valves & Controls (PVC) provides the information herein in good faith but makes no representation as to its comprehensiveness or accuracy. Individuals using this information in this publication must exercise their independent judgment in evaluating product selection and determining product appropriateness for their particular purpose and system requirements. PVC makes no representations or warranties, either express or implied, including without limitation any warranties of merchantability or fitness for a particular purpose with respect to the information set forth herein or the product(s) to which the information refers. Accordingly, PVC will not be responsible for damages (of any kind or nature, including incidental, direct, indirect, or consequential damages) resulting from the use of or reliance upon this information. Pentair reserves the right to change product designs and specifications without notice. All registered trademarks are the property of their respective owners. Printed in the USA. PVCMC-0296-US-1203 rev 12-2012 Pentair Pressure Relief Valve Engineering Handbook Contents Technical Publication No. TP-V300 Table of Contents Chapter 1 – Introduction 1.1 Chapter 2 – Terminology 2.1 I. General 2.1 II. Types of Devices 2.1 III. Parts of Pressure Relief Devices 2.1 IV. Dimensional Characteristics – Pressure Relief Valves 2.2 V.
    [Show full text]
  • SAFETY VALVES BASIC KNOWLEDGE Protection Against Overpressure
    SAFETY VALVES BASIC KNOWLEDGE Protection against overpressure. The primary purpose of a safety valve is the pro- tection of life, property and environment. A safe- ty valve is designed to open and relieve excess pressure from vessels or equipment and to reclose and prevent the further release of fluid after normal CONTENTS conditions have been restored. REASONS FOR P. 04 1. EXCESS PRESSURE IN A VESSEL SPRING LOADED P. 06 2. SAFETY VALVES PILOT-OPERATED P. 08 3. SAFETY VALVES Pressure Relief Devices Reclosing Devices ENSURING Non-reclosing Devices PLANT SAFETY Rupture Disc Direct-load Controlled Pin-actuated Device Controlled Safety Pressure Relief System Spring Weight Loading Principle loaded loaded Pilot-Operated Safety Valve Relief Safety Safety Snap-acting Modulating Valve* Valve* Relief Function Valve* *acc. to ASME A safety valve is a safety device and in many cases the last line of defence. It is important to ensure that the safety valve is capable to operate at all times and under all circumstances. A safety valve is not a process valve or pressure regulator and should not be misused as such. It should have to operate for one purpose only: overpressure protection. 1. REASONS FOR EXCESS PRESSURE IN A VESSEL There is a number of reasons why the pressure in a Each of the above listed events may occur individ- vessel or system can exceed a predetermined lim- ually and separately from the other. They may also it. API Standard 521/ISO 23251 Sect. 4 provides take place simultaneously. Each cause of over- a detailed guideline about causes of overpressure.
    [Show full text]
  • You Are Judged by the Company You Keep!
    You are judged by the company you keep! Having an FPTI™ training system in your laboratory will tell its own story about the quality of your hydraulics training program. Why you should choose FPTI™ as your hydraulics education partner! SAFETY-BASED TRAINING We are the only hydraulics training company that makes safety the cornerstone of everything we develop. You will feel confident knowing that students who graduate from your training courses will have the knowledge to work safely with hydraulics, and moreover, be able to cultivate hydraulic safety wherever they go. In keeping with our philosophy of “safety-based” training, the MF102 series simulators are designed to teach students everything they need to know about OSHA’s and MSHA’s lockout standards. The simulators are equipped with electrical switch lockouts, and the revolutionary Safe-T-Bleed® system. Safe-T-Bleed® is the only system in the world which is designed to de-energize a hydraulic system and verify de-energization, and to permit air-purging, all without spilling a drop of oil. Lockout and tagout MUST be taught in schools and colleges to properly prepare students for the chal- lenges they will face in a tough, fast-paced, unrelenting production environment. 2 Safe-T-Bleed® is a registered trademark of Safe-T-Bleed® Corporation A partial list of the institutions who partner with us because they have a desire to deliver hydraulic training brilliantly: BJ Services Company - Texas Canadian Military (CFSEME) - Ontario, CANADA Des Moines Area Community College - Iowa Great Basin
    [Show full text]
  • Safety and Relief Valves
    Safety and Relief Valves Learning Outcome When you complete this module you will be able to: Discuss boiler safety valves for power boilers and heating boilers. Learning Objectives Here is what you will be able to do when you complete each objective: 1. State the ASME Code requirement for safety valves. 2. Describe the construction and operation of high pressure safety valves. 3. Describe the construction and operation of low pressure heating boiler safety valves and safety relief valves. 4. Describe the testing and repair of safety valves. 5. Describe the construction and operation of a temperature relief device. 1 BLRS 6022 INTRODUCTION Each boiler is designed to operate below a specific maximum pressure. The basic function of safety valves is to protect boilers against overpressure. Certain conditions, such as sudden loss of load or failure of automatic controls, can cause the boiler pressure to rapidly exceed the operating pressure. To prevent bursting of the boiler drum or other pressure parts due to this excessive pressure, at least one pressure operated safety valve must be installed on each boiler. When the pressure in the boiler approaches its maximum allowable value, the safety valve will open and release steam to the atmosphere, thus preventing any further increase in pressure. CODE REQUIREMENTS The ASME Code states that each steam boiler shall have at least one safety valve, and if the boiler has over 46.4 m2 (500 sq. ft.) of water heating surface, then two or more safety valves shall be installed. All boilers must be fitted with an approved type of pop safety valve of sufficient capacity to discharge all the steam that the boiler can evaporate, without permitting the pressure to rise more than 6% above the allowable working pressure.
    [Show full text]
  • Service Manual
    SB4135E00 Jan. 2004 Service Manual B3.3 Diesel Engine Lift Trucks D20S-3(B3.3), D25S-3(B3.3), D30S-3(B3.3), D32S-3(B3.3), D33S-3(B3.3) Skid Steer Loaders 450/450Plus, 460/460Plus Important Safety Information Most accidents involving product operation, maintenance and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills and tools to perform these functions properly. Read and understand all safety precautions and warnings before operating or performing lubrication, maintenance and repair on this product. Basic safety precautions are listed in the “Safety” section or the Service or Technical Manual. Additional safety precautions are listed in the “Safety” section of the owner/operation/maintenance publication. Specific safety warnings for all these publications are provided in the description of operations where hazards exist. WARNING labels have also been put on the product to provide instructions and to identify specific hazards. If these hazard warnings are not heeded, bodily injury or death could occur to you or other persons. Warnings in this publication and on the product labels are identified by the following symbol. WARNING Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death. Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information.
    [Show full text]