WG Bagnall Ltd Commenced Trading As a Locomotive Works

Total Page:16

File Type:pdf, Size:1020Kb

WG Bagnall Ltd Commenced Trading As a Locomotive Works DIXIE is a 5" narrow gauge saddle tank loco- motive with open cab and footplate mounted coal bunkers and is based on the Kerr Stuart “Wren” class. These popular, diminutive but powerful locomotives were used widely in industry and because of this several survive today in preservation, including the well known and much travelled “PETER PAN”, the equally well known “PIXIE” and “LORNA DOONE”, a much worked engine, saved from the scrapmans torch and now, thankfully, safely in preservation. G Bagnall Ltd commenced trading as a locomotive works in the year 1887. Noted for their enormous diversity of fin- ished products, it wasn’t until 1891 when Ernest Baguley Wwas engaged as works manager that a production system was intro- duced. Baguley designed a standard range of locomotive types which characterised Bagnall from that time forward. These locomotives were the familiar narrow gauge saddle tanks so popular with small con- tractors and the type that Sapphire is based upon. Sapphire features a “round top” saddle tank, brass filler, full cab and bunkers with cir- cular brass window frames, handrails and cab mounted whistle. Slip eccentric valve gear is fitted as standard with optional Hackworth or Walschaerts valve gear. Other options available (see pricelist) are iron spoked wheels, brass top chimney, screw down brake, mechan- SWALLOW ical lubricator, injector and Tender. SWALLOW is a standard gauge 0-4-0 shunter based on the locomotive supplied to Messrs Cadbury Bros of Bournville in 1959. This engine joined four Avonside built locos of similar design, but of a much earlier date, they were introduced between 1910/20.All these locomotives were painted in the distinctive Cadbury livery of Bright red, lined out in Yellow & Black and with the Cadbury Bournville lettering along the tank sides, in Gold leaf , edged in Crimson. These hand- some engines worked the extensive rail system at Bournville for many years and there is at least one survivor in preservation. Around this time, Hunslet built and supplied a number of similar locomotives for use in industry and as such, are typical of the last British industrial steam locomotives on the standard gauge. DIXIE, SAPPHIRE, SWALLOW SPECIFICATION GAUGE 5” WORKING PRESSURE 90 psi (6.2 bar) 2” to 1ft (1: 6) SCALE LENGTH 26” (660mm) 1” to 1ft (1 : 12) SWALLOW BOILER Copper - loco type WIDTH 10” (254mm) Hand & Crosshead pumps 17” (431mm) WATER FEED HEIGHT Injector (Separate feed) optional 13” (330mm) SWALLOW CYLINDERS Cast gun metal WEIGHT 60 lbs (27.2 kilos) CYLINDER BORE 11/4” (31.7mm) MINIMUM CURVE 8ft (2438mm) CYLINDER STROKE 11/2" (38mm) LOAD 6 adults (level track) VALVE GEAR Slip Eccentric (Standard) 11 STEAM LOCOMOTIVES standard & optional equipment & fittings CHALONER DIXIE SWALLOW SAPPHIRE PEARL OPAL LI’L JO TRACTOR JACK ALICE SLIP ECCENTRIC VALVE GEAR HACKWORTH VALVE GEAR MARSHALL VALVE GEAR WALSCHAERTS VALVE GEAR INSIDE MARSHALL VALVE GEAR STEPHENSONS LINK VALVE GEAR 4” DISC DRIVING WHEELS 4” IRON SPOKED DRIVING WHEELS 5” DISC DRIVING WHEELS 5” IRON SPOKED DRIVING WHEELS 3 1/4” TRAILING WHEELS 3 1/4” PONY TRUCK WHEELS BRASS TOP CHIMNEY SPARK ARREST CHIMNEY MECHANICAL LUBRICATOR DISPLACEMENT LUBRICATOR BRASS DOME INJECTOR TANK MOUNTED SAND BOXES HAND PUMP CROSSHEAD PUMP CRANK/AXLE PUMP ELETRIC PUMP WHISTLE (STEAM) SCREWDOWN BRAKE SAFETY VALVE TWIN SAFETY VALVES BLOWDOWN VALVE WATER GAUGE PRESSURE GAUGE BYPASS VALVE 4 WHEEL TENDER BOGIE TENDER CANOPY DIFFERENTIAL OPTIONAL EXTRAS STANDARD EQUIPMENT 8.
Recommended publications
  • Walschaerts Valve-Gear 2 Return Cranks with Steel Screws & Nuts
    This pack contains the following parts: - Walschaerts Valve-Gear 2 Return Cranks with steel screws & nuts. 2 Expansion links with bushes & This kit contains parts to construct 2BA nuts. a set of Walschaerts type valve- 2 Lifting arms with grub screws & Allen key. gear as used on ROUNDHOUSE 2 Lifting links. locomotives. It is of a simplified 4 M2 steel screws & nuts. design, which does not use a 6 5BA steel washers. combination lever and is intended 2 Radius rods. for use with the ROUNDHOUSE 2 Weigh shaft brackets 1 Weigh shaft. Cylinder set. 2 Starlock washers 2 Roll pins. NOTE:- Frames, Cylinders, 6 Short crank pins. Coupling Rods, Connecting Rods, 2 Plain crank pins Axles and Outside Cranks are not included with this set of parts. 1 Push Rod Connector, Screw & Starlock. 1 Stainless Steel spring & Long Crank Pin. 1 Reversing lever handle. 1 Reversing lever base. 3 M2 screws and nuts. 2 M3 mounting screws. 1 Steel push rod & quicklink connector. Roundhouse Engineering Co. Ltd 2 Eccentric rods. Units 6 to 9, Churchill Business Park, Churchill Road, Wheatley, Doncaster. DN1 2TF. England. Tel 01302 328035 Fax 01302 761312 Email: [email protected] www.roundhouse-eng.com 1 Walschaerts Valve-Gear Part Number WVG Assembly of Walschaerts type valve-gear 1). Radius Rod. 2). Lifting Link. 3). Lifting Arm. Diagram4). Expansion showing Linkgeneral Bush. arrangement 5). Weigh of Walschaerts Shaft Bracket valve (Penguin). gear. NOTE:- Frames, Coupling rods, connecting rods and outside cranks are not included6). Weigh with this Shaft. set of 7). parts. Starlock Washer. 8). 2BA Nut.
    [Show full text]
  • Establishing Relieving Capacities
    Establishing Relieving Capacities Prepared for Chief’s meeting October 9, 2019 By Joseph F. Ball, P. E. Overview of Session • Review of Section IV Pressure Relief Capacity Requirements • ASME Requirements • NBIC Installation Requirements • Establishment of Relieving Capacity for Section IV Pressure Relief Valves Section IV Capacity Requirements The Basics: Overpressure protection requirements are defined by boiler manufacturer. Nameplate shall include: (HG-530.1(a)(3)) Safety or safety relief valve capacity (minimum) as determined according to HG-400.1(d) and HG-400.2(e) Heating area must be marked Section IV Capacity Requirements The Basics: Same for cast iron or aluminum (HG-530.2(c)(3)) – depends upon number of sections Section IV Capacity Requirements The Basics: Modular Boilers • Each module has its own nameplate with capacity required for that module • Aggregate capacity (and heating area) is applied to a single nameplate for the combined unit Section IV Capacity Requirements The Basics: HG-400.1 (d) The minimum valve capacity in pounds per hour shall be determined by dividing the maximum Btu/hr (kW) output at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646). In every case, the requirement of (e) shall be met. (e) The safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed, and operated at maximum capacity, the pressure cannot rise more than 5 psi (35 kPa) above the maximum allowable working pressure. Section IV Capacity Requirements The Basics: HG-400.2 (e) The required steam-relieving capacity, in pounds per hour (kg/hr), of the pressure-relieving device or devices on a boiler shall be determined by dividing the maximum output in Btu/hr (kW) at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1,000 (0.646).
    [Show full text]
  • Steamboating Guide Edition 2 2010
    Steamboating SampleGuide Pages Second Edition Steamboating Guide Edition 2 2010 Edited by Roger Calvert and Rob van Es The contributors and editors of this publication have made every effort to ensure the accuracy and relevance of the data presented and the validity and appropriateness of the recommendations made. It is, however, ultimately the responsibility of the owner of a boat to check the data and take the final decisions, in the context of the proposed design. If necessary, appropriate professional advice should be sought. Neither the contributors, the editors, nor the SBA can accept responsibility for any direct or indirect consequences arising from the use of the data or from following the recommendationsSample of this publication. Pages Copying of parts or the whole of this document by members of the SBA is permitted, subject to the terms published on the SBA web site. Otherwise, copying is not permitted without the permission of the SBA, except as allowed under copyright law. Table of Contents Preface Section A – Introduction 1 Hulls 1-1 2 Boiler Types 2-1 3 Engine Types 3-1 4 Fuels 4-1 Section B – Steamboat Operations 5 Boiler Fittings 5-1 6 Steam Plant Installation 6-1 7 Boiler Operation and Maintenance 7-1 8 Steam Ancillaries 8-1 9 Boat Handling Advice 9-1 10 Boiler Inspection and Testing 10-1 11 Trailers and Towing 11-1 Section C – Technical 12 Propulsion 12-1 13 Valve Setting 13-1 14 Data and Performance 14-1 15 Boiler Design Considerations 15-1 16 Workshop Techniques 16-1 Glossary 17-1 Index 18-1 Sample Pages Preface The aims and objects of the Steam Boat Association are: (i) To foster and encourage steam boating and the building, development, preservation and restoration of steam boats and steam machinery, by all possible means.
    [Show full text]
  • Modernizing the Opposed-Piston, Two-Stroke Engine For
    Modernizing the Opposed-Piston, Two-Stroke Engine 2013-26-0114 for Clean, Efficient Transportation Published on 9th -12 th January 2013, SIAT, India Dr. Gerhard Regner, Laurence Fromm, David Johnson, John Kosz ewnik, Eric Dion, Fabien Redon Achates Power, Inc. Copyright © 2013 SAE International and Copyright@ 2013 SIAT, India ABSTRACT Opposed-piston (OP) engines were once widely used in Over the last eight years, Achates Power has perfected the OP ground and aviation applications and continue to be used engine architecture, demonstrating substantial breakthroughs today on ships. Offering both fuel efficiency and cost benefits in combustion and thermal efficiency after more than 3,300 over conventional, four-stroke engines, the OP architecture hours of dynamometer testing. While these breakthroughs also features size and weight advantages. Despite these will initially benefit the commercial and passenger vehicle advantages, however, historical OP engines have struggled markets—the focus of the company’s current development with emissions and oil consumption. Using modern efforts—the Achates Power OP engine is also a good fit for technology, science and engineering, Achates Power has other applications due to its high thermal efficiency, high overcome these challenges. The result: an opposed-piston, specific power and low heat rejection. two-stroke diesel engine design that provides a step-function improvement in brake thermal efficiency compared to conventional engines while meeting the most stringent, DESIGN ATTRIBUTES mandated emissions
    [Show full text]
  • Four-Stroke Cycle Trunk Piston Type Diesel Engine Diesel-Viertaktmotor Moteur Diesel a Quatre Temps
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 529 935 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: F16C 5/00, F02B 75/32 of the grant of the patent: 15.05.1996 Bulletin 1996/20 (21) Application number: 92307594.9 (22) Date of filing: 19.08.1992 (54) Four-stroke cycle trunk piston type diesel engine Diesel-Viertaktmotor Moteur Diesel a quatre temps (84) Designated Contracting States: (56) References cited: CH DE DK GB LI DE-A-2 620 910 DE-C- 577 389 DE-U- 9 003 721 US-A-2 057 158 (30) Priority: 29.08.1991 JP 218587/91 US-A-2 410 565 (43) Date of publication of application: • "Bau und Berechnung von 03.03.1993 Bulletin 1993/09 Verbrennungsmotoren" 1983 • "Verbrennungsmotoren Band 1" 1990 (73) Proprietor: THE HANSHIN DIESEL WORKS, LTD. • "Krafte, Momente und deren Ausgleich in der Kobe, Hyogo 650 (JP) Verbrennungskraftmaschine" 1981 • "Motoren Technik Praxis Geschichte" 1982 (72) Inventor: Nakano, Hideaki • "Gestaltungen und Hauptabmessungen der Okubo-cho, Akashi, Hyogo 674 (JP) Verbrennunskraftmaschine" 1979 • Forscher Bericht VDI "Entwicklungsaspekte bei (74) Representative: Rackham, Anthony Charles Grossdieselmotoren" 1985 Lloyd Wise, Tregear & Co., • "The Motor Ship" Feb 1993 Commonwealth House, 1-19 New Oxford Street London WC1A 1LW (GB) DO lO CO O) O) CM LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted.
    [Show full text]
  • See 1912/1913 Bulletin 8-4 (Pdf Images
    .· ' ·. _--Series VIII. _' N~mber iv. BlJLLETlN. THE_ -OF . ·-. • • j • • University. - g · of l.\lotre Dame ---_ I\lOTRE . DAME~ II'JDIANA -j : • , : .. -. ·. , , . ( · . ' ·. ! . ·. _.! . i I ' : : ~ : - _.· . .; .· ·. ·- .:. · GENERAL CATALOGUE -. _ __.. ' l9J2·:·J 9J3 - . _- . .. - ·PUBLISHED QUARTERLY AT -NOTRE Dl\.ME '•· :- - _ f. THE U~I"VERSITY PRESS -. , APRIL,. J9'J3 · .-·­- Entered. at th~ Postoffice, N~tr ~ Dame~ Indiana, ~s sec~!'ld~das s m attertl tl[y 17, J 90.5 :- ... _, -~ ,- .... UNIVERSITY OF NOTRE DAM E Noire Damn, Imliana Series VIII* Ntmifeer IV* BULLETIN OF THE University of Notre Dame NOTRE DAME, INDIANA GENERAL CATALOGUE 1912-1913 PUBLISHED QUARTERLY AT NOTRE DAME THE UNIVERSITY PRESS APRIL, 1913 Entered at the Postoffice, Notre Dame, Indiana, as second-class m atter, July 17, i 9 0 s 2 BULLETIN OF THE DIRECTORY OF THE UNIVERSITY The FACULTY—Address: THB UNIVERSITY OF NOTRB DAM#, NOTRE DAME, INDIANA. The STUDENTS—Address: As for the Faculty, except that the name of the H a l l in which the student lives should be added. A Postoffice, a Telegraph Office, a Long Distance Tel­ ephone, and an Bxpress Office are at the University. The University is two miles from the city of South Bend, Indiana, and about eighty miles east of Chicago. The Lake Shore and Michigan Southern, the Grand Trunk, the Vandalia, the Indiana, Illinois & Iowa, the Chicago and Indiana Southern, and the Michigan Cen­ tral railways run directly into South Bend. A trolley line runs cars from South Bend to the University every fifteen minutes. The Latitude of the University is 41 degrees, 43 minutes, and 12.7 seconds North, and 86 degrees, 14 minutes and 19.3 seconds W est of Greenwich.
    [Show full text]
  • Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle
    Types and Characteristics of Locomotives Dr. Ahmed A. Khalil Steam Locomotives - Operating Principle: The wheel is connected to the rod by a crank. The rod is connected to the piston rod of the steam cylinder., thereby converting the reciprocating motion of the piston rod generated by steam power into wheel rotation. - Main Parts of a steam locomotive: 1. Tender — Container holding both water for the boiler and combustible fuel such as wood, coal or oil for the fire box. 2. Cab — Compartment from which the engineer and fireman can control the engine and tend the firebox. 3. Whistle — Steam powered whistle, located on top of the boiler and used as a signalling and warning device. 4. Reach rod — Rod linking the reversing actuator in the cab (often a 'johnson bar') to the valve gear. 5. Safety valve — Pressure relief valve to stop the boiler exceeding the operating limit. 6. Generator — Steam powered electric generator to power pumps, head lights etc, on later locomotives. 7. Sand box/Sand dome — Holds sand that can be deposited on the rails to improve traction, especially in wet or icy conditions. 8. Throttle Lever — Controls the opening of the regulator/throttle valve thereby controlling the supply of steam to the cylinders. 9. Steam dome — Collects the steam at the top of the boiler so that it can be fed to the engine via the regulator/throttle valve. 10. Air pump — Provides air pressure for operating the brakes (train air brake system). 11. Smoke box — Collects the hot gas that have passed from the firebox and through the boiler tubes.
    [Show full text]
  • Crosshead Bearing Design Meets New Challenges
    Royal Belgian Institute of Marine Engineers Crosshead bearing design meets new challenges Proposed improvements to crosshead bearings rely on new materials and processes by Doug Woodyard ew approaches to bearing materials, bearing design and production methods for low speed engines are driven by N higher firing pressures. Bearings need to be engineered to balance load capability with the tribological requirements of the application. The crankshaft of a two-stroke, low speed engine is connected to the piston via a connecting rod, crosshead and piston rod. Crosshead bearing movement is solely oscillating and the load vector is always directed downward; reliable hydrodynamic lubrication and oil supply thus become difficult to ensure. One solution is for hydrostatic lubrication with an oil pressure of around 12 bar in specially created oil pockets. The crosshead pin is thereby raised briefly at each revolution to ensure the oil supply. Two different crosshead bearing designs and lining materials are currently used: either a single lower bearing shell or a divided lower bearing shell, depending on the engine size. The common lining materials are aluminium-based A1Sn40 and whitemetal-based HM07. Future crosshead bearing designs must be robust and combine a high safety margin with high performance, Austrian bearing specialist Miba advises, requiring bearing designs based on A1Sn40 linings to be further improved. Extra wide lower crosshead shells rather than divided designs are proposed for long-stroke engines with a minimum bore of 400mm. Miba's new lower crosshead bearing design, termed a Patch-Work-Bearing, is based on a tri-metal configuration of steel-aluminium-tin 40-Synthec for Tier II engine platforms.
    [Show full text]
  • Westinghouse Technology 7.1 Main and Auxiliary Steam Systems
    Westinghouse Technology Systems Manual Section 7.1 Main and Auxiliary Steam Systems TABLE OF CONTENTS 7.1MAIN AND AUXILIARY STEAM SYSTEMS ................................................... 7.1-1 7.1.1 Introduction .......................................................................................... 7.1-1 7.1.2 Main Steam System Description ......................................................... 7.1-1 7.1.2.1 Safety Considerations ............................................................ 7.1-2 7.1.2.2 Accident Considerations ........................................................ 7.1-3 7.1.3 Main Steam System Component Descriptions .................................... 7.1-4 7.1.3.1 Flow Restrictors ..................................................................... 7.1-4 7.1.3.2 Main Steam Instrumentation .................................................. 7.1-4 7.1.3.3 Power-Operated Relief Valves ............................................... 7.1-5 7.1.3.4 Steam Generator Safety Valves ............................................ 7.1-6 7.1.3.5 AFW Pump Steam Supplies .................................................. 7.1-6 7.1.3.6 High Pressure Drains ............................................................. 7.1-6 7.1.3.7 Main Steam Isolation Valves .................................................. 7.1-7 7.1.3.8 Main Steam Check Valves ..................................................... 7.1-8 7.1.3.9 MSIV Bypass Valves .............................................................. 7.1-8 7.1.4 Auxiliary Steam System
    [Show full text]
  • O-Steam-Price-List-Mar2017.Pdf
    Part # Description Package Price ======== ================================================== ========= ========== O SCALE STEAM CATALOG PARTS LIST 2 Springs, driver leaf........................ Pkg. 2 $6.25 3 Floor, cab and wood grained deck............. Ea. $14.50 4 Beam, end, front pilot w/coupler pocket...... Ea. $8.00 5 Beam, end, rear pilot w/carry iron.......... Ea. $8.00 6 Bearings, valve rocker....................... Pkg.2 $6.50 8 Coupler pockets, 3-level, for link & pin..... Pkg. 2 $5.75 9 Backhead w/fire door base.................... Ea. $9.00 10 Fire door, working........................... Ea. $7.75 11 Journal, 3/32" bore.......................... Pkg. 4. $5.75 12 Coupler pockets, small, S.F. Street Railway.. Pkg.2 $5.25 13 Brakes, engine............................... Pkg.2 $7.00 14 Smokebox, 22"OD, w/working door.............. Ea. $13.00 15 Drawbar, rear link & pin..................... Ea. $5.00 16 Handles, firedoor............................ Pkg.2. $5.00 17 Shelf, oil can, backhead..................... Ea. $5.75 18 Gauge, backhead, steam pressure.............. Ea. $5.50 19 Lubricator, triple-feed, w/bracket, Seibert.. Ea. $7.50 20 Tri-cock drain w/3 valves, backhead.......... Ea. $5.75 21 Tri-cock valves, backhead, (pl. 48461)....... Pkg. 3 $5.50 23 Throttle, nonworking......................... Ea. $6.75 23.1 Throttle, non working, plastic............... Ea. $5.50 24 Pop-off, pressure, spring & arm.............. Ea. $6.00 25 Levers, reverse/brake, working............... Kit. $7.50 26 Tri-cock drain, less valves.................. Ea. $5.75 27 Seat boxes w/backs........................... Pkg.2 $7.50 28 Injector w/piping, Penberthy,................ Pkg.2 $6.75 29 Oiler, small hand, N/S....................... Pkg.2 $6.00 32 Retainers, journal........................... Pkg.
    [Show full text]
  • T H E G E N E R a T
    Newsletter of THE PALMERSTON NORTH MODEL ENGINEERING CLUB INC Managers of the “MARRINER RESERVE RAILWAY” Please address all correspondence to :- 22b Haydon St, Palmerston North. PRESIDENT SECRETARY TREASURER EDITOR Robert Edwards Stuart Anderson John Tweedie Doug Chambers (06) 355-1489 (06) 357-7794 (06) 358-0150 (06) 354-9379 September [email protected] [email protected] [email protected] [email protected] 2012 No 382 PNMEC Home Page www.pnmec.org.nz Email:- [email protected] TRACK RUNNING T This is held on the FIRST and THIRD Sunday of each month, from 1 pm to 4 pm Summer and 1 pm to 3 pm during the Winter. All club members are welcome to attend and help out with loco coaling, watering and passenger marshalling - none of the tasks being at all H Visiting club members are always welcome at the track, at the monthly meeting, or if just visiting and wishing to make contact with members, please phone one of the above office bearers. E Sender:- PNMEC Place 22b Haydon St, stamp Palmerston North here G E N E This Months Featured Model R A T O R - 2 - The steel work on the axles shows evidence of Report on the blacksmith’s skills so that indicates that the August Meeting. model may date back to the early 1900s. Richard Lockett started off the evening with a brief talk on the sharpening of lathe tools and drills. Merv George was asked to talk about the bench grinder and rest he had brought in. This grinder was fitted with a diamond grinding wheel and was used solely for sharpening drills.
    [Show full text]
  • FLYING SCOTSMAN’ LNER 4-6-2 1:32 SCALE • 45 Mm GAUGE
    ‘FLYING SCOTSMAN’ LNER 4-6-2 1:32 SCALE • 45 mm GAUGE ENGINEERING SAMPLE SHOWN Sir Nigel Gresley was renowned for his Pacific express locomo- SPECIFICATIONS tives, the first of which, the A1 class, entered service in 1922. The A3 was a modification of the A1 and over time all of the sur- Scale 1:32 viving A1s were rebuilt as A3s. No. 4472 “Flying Scotsman” was Gauge 45 mm built in 1923 and went on to become one of the most famous Mini. radius 6ft 6in. (2 m) steam locomotives in the world setting many records along the way. After the war it was renumbered 103 then, after the nation- Dimensions 26.5 x 3.5 x 5.25 in. alisation, carried the number 60103, remaining in service on the Construction Brass & stainless steel East Coast mainline until 1963. During its service career it cov- Electric Version ered over 2,000,000 miles and travelled non-stop from London Power 0~24V DC to Edinburgh in 8 hours. It was sold into private ownership, was Full cab interior design sent to America and Australia and is today under restoration at Features The National Railway Museum in York. Constant lighting Live Steam Version We are currently developing a 1:32 scale live steam version of our very successful electric LNER A3 Class “Flying Scotsman”. Power Live steam, butane fired The model is gas-fired with slide valves and has all the features Boiler Copper the Gauge 1 fraternity have come to expect from an Accucraft Valve gear Walschaerts valve gear locomotive.
    [Show full text]