Vegetative Propagation of Spanish Lime and Jaboticaba1

Total Page:16

File Type:pdf, Size:1020Kb

Vegetative Propagation of Spanish Lime and Jaboticaba1 finisher provides a workable way to process carambola. The Acknowledgements pasteurization temperature in citrus evaporator might be too high for processing a variety of delicate tropical fruits. The authors wish to express their gratitude to FMC A modification of heat pasteurization section in citrus Corp. for the donation of juice; Romicon, Inc. for the loan evaporator might be needed. In order to further reduce of a membrane system; and Freeborn Foods Co. for a gift transporation and storage costs, a contracted commercial for fruit juice processing research at Lake Alfred. processing service such as the spray-drying service can also be considered to produce the convenient and shelf stable Literature Cited spray-dried products from juice concentrates. Attaway et al. 1972. Some new analytical indicators of processed orange juice quality. Proc. Fla. State Hort. Soc. 85:192-202. Processing of Tropical Fruit Barros, S. M. 1990. Effect of temperature and centrifuging on the charac teristics of orange juice. Proc. Fla. State Hort. Soc. 103:272-274. No citrus processing plant in Florida is currently pro Bates, R. P. and R. D. Carter. 1984. The suitability of citrus TASTE cessing tropical fruit grown in south Florida. For a citrus evaporators for Muscadine grape juice concentrate production. Proc. processing plant to handle tropical fruit juice processing, Fla. State Hort. Soc. 97:84-89. Carter, R. D. 1985. Reconstituted Florida orange juice. Fla. Dept. of Citrus, a line of small capacity equipment needs to be assembled, Scientific Research Dept., Lake Alfred, FL. and some specialized handling equipment needs to be de veloped. At the current levels of tropical fruit production Chen, C. S., R. D. Carter, W. M. Miller, and T. A. Wheaton. 1981. Energy volume in south Florida, there is little economic incentive performance of a HTST citrus evaporator under digital computer to encourage citrus processors to become active in the pro control. Trans. Amer. Soc. Agric. Engr. 24(6): 1678-1682. Ferguson, R. R. 1990. Personal communication. FMC Corp. Citrus cessing of tropical fruit. However, in the past several years, Machinery Div., Lakeland, FL. blended juice products from orange juice and tropical fruit Florida Agricultural Statistical Service. 1991. Citrus Summary. Orlando juices, such as strawberry-banana-orange and pineapple- FL. passion-banana have been developed by some fruit juice Jagtiani, J., H. T. Chan, Jr., and W. S. Sakai. 1988. Tropical Fruit Process ing. Academic Press, Inc., New York. processors. Meanwhile, the volume of tropical fruit produc Nagy, S., S. Barros, R. D. Carter, and C. S. Chen. 1990. Production and tion is increasing. The recent passage of the Tropical Fruit characterization of carambola essence. Proc. Fla. State Hort. Soc. Policy Act (Chapter 90-277) by the Florida Legislature will 103:277-279. undoubtedly accelerate further growth of the tropical fruit Olesen, R. K. 1990. Rising demand for tropical fruit juices and pulp. industry in Florida. Fruit juice processing experience and International Trade Forum. 26(4): 12-17. The Tropical Fruit Advisory Council. 1990. The South Florida Tropical resources exist in the Florida citrus industry. There is a Fruit Plan. Florida Dept. of Agriculture and Consumer Services, Tal bright future for the integration of tropical fruit processing lahassee, FL. into citrus processing facilities. Proc, Fla. State Hort. Soc. 104:54-56. 1991. VEGETATIVE PROPAGATION OF SPANISH LIME AND JABOTICABA1 Kirk D. Larson2, Bruce Schaffer, and S. Pablo Lara no rooting was observed for jaboticaba or for herbaceous cut Fruit Crops Dept. tings of Spanish lime. In a second series of experiments, shoots Tropical Research and Education Center of both species were either girdled (cinctured) about one month IFAS, University of Florida prior to marcottage or girdled at the time of marcottage. For Homestead, FL 33031 both treatments, basal ends of marcots were treated with 0, 1.6%, or 4.5% IBA in lanolin at the time marcots were made. Additional index words, air layer, cutting, indole-3-butyric After 3 months, regardless of treatment, no rooting was ob acid, marcot, Melicoccus bijugatus, Myrciaria cauliflora. served for jaboticaba marcots. Rooting was observed in 60% to 88% of the Spanish lime marcots; there was no effect of Abstract. Propagation of Spanish lime (Melicoccus bijugatus IBA or time of girdling. However, for propagation of Spanish Jacq.) and jaboticaba (Myciaria cauliflora (Mart.) Berg) was lime, marcottage of vigorously growing upright shoots was attempted from herbaceous and hardwood cuttings, and by more successful then marcottage of less vigorous lateral shoots. marcottage. Shoots were either girdled one month prior to making cuttings, or left ungirdled. Basal ends of cuttings were The Spanish lime (Melicoccus bijugatus Jacq.) is a large treated with 0, 1.6%, or 4.5% indole-3-butyric acid (IBA), evergreen tree native to the Caribbean basin that produces placed in perlite rooting media under mist (15 sec of mist a fruit valued in many areas of the American tropics every 10 min), and either exposed to bottom heating or not (Popenoe, 1920; Sturrock, 1959). The jaboticaba (Myrciaria heated. Regardless of girdling, IBA or heat treatment, only a cauliflora (Mart.) Berg) is a small evergreen tree native to small percentage of hardwood cuttings of Spanish lime rooted; Brazil, where its fruit is highly valued and has many uses (Argles, 1976; Popenoe, 1920; Sturrock, 1959). Both Florida Agricultural Experiment Station Journal Series No. N-00483. species are well adapted to South Florida, where they have The authors thank Lynette Eccles and Mary Jackson for technical assist ance with certain aspects of this study. been cultivated in home gardens for many years (Argles, Present address: University of California South Coast Research and 1976; Popenoe, 1920; Reasoner, 1887). Despite an in Extension Center, 7601 Irvine Blvd., Irvine, CA 92718. creased demand for exotic fruits in the United States in 54 Proc. Fla. State Hort. Soc. 104: 1991. recent years, commercial exploitation of these two species buried in sand directly beneath the flats. Diurnal rooting has been slow to develop. One of the major impediments media temperatures fluctuated between about 18° and 26.5° to their commercial production is a lack of easy and reliable C (65° and 80° F), and 21.5° and 30° C (71° and 86° F), for methods of vegetative propagation. the unheated and heated flats, respectively. Thus, for both The Spanish lime is functionally dioecious, requiring species, there was a 2 x 2 x 3 factorial arrangement of both male and female trees to produce fruit (Campbell, treatments (two temperature treatments, two ages (or sizes) 1976). Propagation from seed produces many more male of plant material, and three hormone treatments). For both trees than is required for pollination, and sex determination species, there were 20 cuttings for each size of plant material in the nursery is difficult. Furthermore, fruit quality and for each hormone/temperature treatment; however, due productivity are variable in female seedling trees. Cur to space limitations in the mist bed, there were only 10 rently, the recommended methods for vegetative propaga cuttings per treatment for the hardwood Spanish lime cut tion of Spanish lime in Florida are approach-grafting, or tings. Root development was evaluated monthly for three marcottage (air layering) of large limbs (Campbell, 1976), months. neither are feasible for propagation on a commercial scale. To determine if girdling (cincturing) the shoots several The jaboticaba is polyembryonic, and thus generally weeks prior to making cuttings would stimulate rooting, true-to-type from seed (Argles, 1976; Ogden and Campbell, hardwood shoots of both species were either girdled or left 1982), but seedling trees have a long juvenile period. Al ungirdled in August, 1989, about one month prior to mak though there are reports of vegetative propagation of the ing cuttings. Selected shoots were in the lower, but well-il jaboticaba (Argles, 1976; Ogden and Campbell, 1982; luminated, parts of the tree, and were about 1.0 cm and Fouque, 1972; Popenoe, 1926; Samson, 1986; Sturrock, 2.5 cm in diameter for jaboticaba and Spanish lime, respec 1959), vegetative propagation is considered difficult in tively. Similarly, for jaboticaba and Spanish lime, girdling Florida, and trees are grown almost exclusively from seed wounds were about 1.0 cm and 2.5 cm wide, respectively. (Ogden and Campbell, 1982). After one month, shoots from both treatments were har To the authors' knowledge, there have been few reports vested, placed in water and transported to a lathhouse. of systematic studies of vegetative propagation of either Pre-girdled shoots were harvested by cutting immediately Spanish lime or jaboticaba. This article describes several below the girdling wound. Cuttings were subjected to methods that we tested in attempts to develop rapid and periodic misting, either bottom heating or no heating, and reliable methods of vegetative propagation for these two one of three hormone treatments, as described previously. species. There were 10 cuttings for each girdling/hormone/heat treatment combination for each species. Root development Materials and Methods was evaluated monthly for all cuttings. All experiments were conducted using plant material Propagation from marcottage. To determine the potential from the fruit tree collection of the University of Florida/ for vegetative propagation by means of marcottage (air I FAS Tropical Research and Education Center, Home layering), marcots of both species were made in November, stead. For Spanish lime, plant material was obtained only 1989. Shoots were selected from lower, but well-illumi from female trees. nated, parts of trees and were about 1.0 cm in diameter Propagation from cuttings. Herbaceous cuttings of Spanish for jaboticaba and 2.5 - 3.0 cm in diameter for Spanish lime, and hardwood cuttings of both species, were obtained lime. In making marcots, two encircling cuts about 2.5 cm in May, 1988. For Spanish lime, herbaceous and hardwood apart were made on each shoot.
Recommended publications
  • Low Risk, Fruit Tree, Edible Fruit, Slow-Growing, Bird-Dispersed, Zoochorous
    Family: Sapindaceae Taxon: Talisia esculenta Synonym: Sapindus esculenta A. St.-Hil. (basionym) Common Name: pitomba Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 406 Host for recognized pests
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
    EENY-214 Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M. C. Thomas, J. B. Heppner, R. E. Woodruff, H. V. Weems, G. J. Steck, and T. R. Fasulo2 Introduction Because of its wide distribution over the world, its ability to tolerate cooler climates better than most other species of The Mediterranean fruit fly, Ceratitis capitata (Wiede- tropical fruit flies, and its wide range of hosts, it is ranked mann), is one of the world’s most destructive fruit pests. first among economically important fruit fly species. Its The species originated in sub-Saharan Africa and is not larvae feed and develop on many deciduous, subtropical, known to be established in the continental United States. and tropical fruits and some vegetables. Although it may be When it has been detected in Florida, California, and Texas, a major pest of citrus, often it is a more serious pest of some especially in recent years, each infestation necessitated deciduous fruits, such as peach, pear, and apple. The larvae intensive and massive eradication and detection procedures feed upon the pulp of host fruits, sometimes tunneling so that the pest did not become established. through it and eventually reducing the whole to a juicy, inedible mass. In some of the Mediterranean countries, only the earlier varieties of citrus are grown, because the flies develop so rapidly that late-season fruits are too heav- ily infested to be marketable. Some areas have had almost 100% infestation in stone fruits. Harvesting before complete maturity also is practiced in Mediterranean areas generally infested with this fruit fly.
    [Show full text]
  • Common Trees of Virgin Islands National Park
    Seashore Trees Fruit Trees Mangrove National Park Service Sugar Apple Rhizophora mangle U.S. Department of the Interior Black, white and red Annona squamosa mangroves are common A small deciduous tree attaining 10-20 ft. in Virgin Islands National Park species along our tropi­ height with irregular cal shores. The red spreading branches. Well shown here, extends shorelines or creates is­ known for its sweet edi­ Common Trees of lands with it's arching ble fruit, resembling hand Virgin Islands National Park stilt roots. grenades in appearance. Ginger Thomas* Seagrape Tecoma stans Cocoloba uvifera Mango* This familiar shoreline Mangifera indica tree is easy to identify by An excellent hardy its large round leathery shade tree with lance leaves. It bears clusters shaped leaves and bear­ of green, ripening to ing one of the finest purple, fruits that are tropical fruits. One of edible. many introduced spe­ cies. Its sap may cause dermatitis. Maho* Thespesia populnea This coastal tree, for Genip* which Maho Bay was Melicoccus bijugatus named, is characterized This large deciduous by large bell-shaped tree has gray blotchy flowers that turn from bark and dark green pale yellow to purple. It leaves . The clustered has heart shaped leaves edible fruits are quarter and green seed pods that sized with green leath­ Ginger Thomas (also yellow cedar or turn brown. ery skin, a single large yellow elder) is a nonnative tree or seed and tart pulpy Manchineel fruit. shrub, that produces the official Hippomane mancine/la flower of the US Virgin Islands. It is This is a very poisonous found along roadsides with bright tree with shiny , small Some common trees within the Park are non­ yellow, trumpet shaped flowers, and oval leaves.
    [Show full text]
  • The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
    The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged.
    [Show full text]
  • Features of Leaves Used in Plant Classification
    The first step in acquiring knowledge is knowing the names of things FEATURES OF LEAVES USED IN PLANT CLASSIFICATION Scott A. Mori Nathaniel Lord Britton Curator of Botany and Carol Gracie IN ORDER TO IDENTIFY PLANTS, ONE NEEDS TO KNOW BOTANICAL TERMINOLOGY FOR PLANT GROWTH FORMS, LEAVES, FLOWERS, AND FRUITS. THE FOLLOWING IMAGES GIVE AN OVERVIEW OF LEAF TERMINOLOGY. FOR MORE DEFINITIONS OF TERMS CLICK ON “GLOSSARY” IN THE BANNER. THE MORPHOLOGICAL VARIATION DISPLAYED BY THE PLANTS OF SABA IS ASTONISHING, BUT ONE NEEDS TO OBSERVE CAREFULLY TO SEE AND UNDERSTAND THAT VARIATION. AN IMPORTANT AID FOR SEEING BOTANICAL FEATURES USED IN PLANT IDENTIFICATION IS A GOOD QUALITY 10X HAND LENS. Drawing by B. Angell PART OF AN IMPARIPINNATE LEAF OF THE SPANISH LIME OR GENIP (Melicoccus bijugatus) Note that this leaf has a winged rachis but most leaves of this species do wing not have winged rachises. Plant features such as this are often variable. Photo by C. Gracie secondary leaflet BIPINNATE LEAF OF THE RAIN TREE (PITHECELLOBIIUM SAMAN) INTRODUCED TO SABA AND GROWING AT WILLARD’S HOTEL primary leaflet The entire structure is one leaf, i.e., everything above the bud is the leaf. Click to see a primary leaflet. Click again to see a secondary leaflet. The only place where there is a bud is where one is indicated. location of bud Photo by C. Gracie MONKEY EAR POD (ENTEROLOBIUM CYCLOCARPUM) small gland pulvinus BASE OF BIPINNATE LEAF OF A MIMOSOID LEGUME MORE LEAF FEATURES USED IN PLANT CLASSIFICATION From Hickey, 1973 FEATURES OF LEAF VENATION USED IN PLANT CLASSIFICATION From Hickey, 1973 FEATURES OF LEAF VENATION USED IN PLANT CLASSIFICATION From Hickey, 1973 FEATURES OF THE LEAF OF THE NONI (MORINDA CITRIFOLIA) Photo by C.
    [Show full text]
  • Plastid and Nuclear DNA Markers.Pdf
    Molecular Phylogenetics and Evolution 51 (2009) 238–258 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, Johan A.A. Nylander f, Mark Harrington g, Isabel Sanmartín h, Philippe Küpfer a, Nadir Alvarez a a Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Department of Botany, Smithsonian Institution, National Museum of Natural History, NHB-166, Washington, DC 20560, USA d Missouri Botanical Garden, PO Box 299, 63166-0299, St. Louis, MO, USA e Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland f Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden g School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia h Department of Biodiversity and Conservation, Real Jardin Botanico – CSIC, Plaza de Murillo 2, 28014 Madrid, Spain article info abstract Article history: The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found Received 21 May 2008 in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf- Revised 27 November 2008 rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip- Accepted 23 January 2009 pocastanaceae – which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Available online 30 January 2009 Hippocastanoideae) – have been debated for decades.
    [Show full text]
  • Melicoccus Bijugatus Jacquin (Sapindaceae), Quenepa: a New
    Life: The Excitement of Biology 1 (1) 3 Melicoccus bijugatus Jacquin (Sapindaceae), quenepa: a new host plant record for the Citrus Fruit Borer, Gymnandrosoma aurantianum Lima, 1927 (Lepidoptera: Tortricidae) and the genus Gymnandrosoma in Puerto Rico1 Irma Cabrera-Asencio2, Alberto L. Vélez3, Santos A. Henríquez4, and Jorge A. Santiago-Blay5 Abstract: The Citrus Fruit Borer, Gymnandrosoma aurantianum Lima, 1927 (Lepidoptera: Tortricidae), is a major pest of Neotropical fruits. We report this species for the first time from Melicoccus bijugatus Jacquin (Sapindaceae), commonly known in Puerto Rico as quenepa. Distinguishing features for the three species of Gymnandrosoma reported for Puerto Rico, G. aurantianum, G. leucothorax, and G. trachycerus, are given. Key Words: Melicoccus bijugatus, new host plant, Citrus Fruit Borer, Gymnandrosoma aurantianum, Arthropoda, Hexapoda, Lepidoptera, Tortricidae Tortricidae are a large (approximately 10,000 described species) and economically important insect family in the order Lepidoptera (Beccaloni et al. 2003; Brown 2005; Brown et al. 2008; Baixeras et al. 2010). Gymnandrosoma is a mostly Neotropical genus of oleuthreutine tortricid currently containing nine species, including G. gonomela (Lower, 1899) from Australia (Horak 2006) and G. junina Razowski and Wojtusiak 2010 from Perú. According to Adamski and Brown (2001), Gymnandrosoma adults have the following four synapomorphies that uniquely distinguish them from those of other putatively closely related taxa in the Ecdytolopha group of genera, such as Ecdytolopha, Thaumatotibia, Pseudogalleria, and Cryptophlebia, of the tribe Grapholitini: 1) forewing 1.95- 2.08 longer than wide (Table 4 in Adamski and Brown 2001 and Figure 1, this work), other genera have a larger l/w ratio; 2) male antennae with basal fourth slightly flattened, bearing conspicuously long sensory setae (“cilia” sensu Adamski and Brown 2001) throughout (Figure 58 in Adamski and Brown 2001 and Figure 2A, arrows, this work), 3) male hind tibia with dense, modified, 1 Submitted on August 15, 2012.
    [Show full text]
  • Melicoccus Bijugatus
    Melicoccus bijugatus Melicoccus bijugatus, commonly called Spanish lime, Aruba), knippa (in Suriname) and Spanish lime (in the genip, guinep, genipe, ginepa, quenepa, chenet, United States), and limoncillo (in the Dominican Repub- canepa, mamon, limoncillo or mamoncillo,[1] is a fruit- lic). Also, it is often referred to as anoncillo in central bearing tree in the soapberry family Sapindaceae, native Cuba and southern Florida. It is called “ackee” in the or naturalized over a wide area of the tropics including countries of Barbados, St.Lucia, and St. Vincent and the South and Central America, Puerto Rico, Dominican Re- Grenadines, however, in the rest of the Caribbean, the public, Haiti and other parts of the Caribbean. latter name is used to refer to the related Blighia sapida. 1 Taxonomy 2 Distribution The genus Melicoccus was first described by Patrick Melicoccus bijugatus is native to northern South America Browne, an Irish doctor and botanist, in 1756. This de- and naturalised in coastal and dry forest in Central Amer- scription was based on M. bijugatus trees which were ica, the Caribbean and parts of the Old World tropics.[2] cultivated in Puerto Rico . In 1760, Nikolaus Joseph It is believed to have been introduced into the Caribbean von Jacquin described the first species in Browne’s genus, in pre-Columbian times.[3] This fruit, known as quenepa which he named M. bijugatus. In 1762 Linnaeus used a in Puerto Rico, grows particularly abundant in the munic- spelling variation of the name Melicocca bijuga. Over the ipality of Ponce, and there is a yearly celebration in that next two centuries, Linnaeus’ spelling variation was used municipality known as Festival Nacional de la Quenepa in almost all publications.
    [Show full text]
  • Anther and Gynoecium Structure and Development of Male and Female Gametophytes of Koelreuteria Elegans Subsp
    Flora 255 (2019) 98–109 Contents lists available at ScienceDirect Flora journal homepage: www.elsevier.com/locate/flora Anther and gynoecium structure and development of male and female gametophytes of Koelreuteria elegans subsp. formosana (Sapindaceae): T Phylogenetic implications ⁎ Adan Alberto Avalosa,1, Lucía Melisa Zinia,1, María Silvia Ferruccia, Elsa Clorinda Lattara,b, a IBONE-UNNE-CONICET, Sargento Cabral 2131, C.P. 3400 Corrientes, Argentina b Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias, Sargento Cabral 2131, C.P. 3400 Corrientes, Argentina ARTICLE INFO ABSTRACT Edited by Louis Ronse De Craene Anther and gynoecium structure and embryological information in Koelreuteria and Sapindaceae as a whole fl Keywords: remain understudied, as well as the evolution of imperfect owers in the latter. The aims of this study were to Monoecy analys in K. elegans subsp. formosana the anther and gynoecium structure and the development of male and Microsporogenesis female gametophytes in the two floral morphs of putatively imperfect flowers. Standard techniques were applied Orbicules for LM and SEM. Compared to the normal anther development in staminate flowers, a delayed programmed cell The pollen tube transmitting tract death of tapetum, septum and middle layers on the onset of microspore stage result in indehiscent anthers in the Ovule campylotropous functionally pistillate flowers. Orbicules are reported for the first time in Sapindaceae. Gynoecium development Character evolution in functionally pistillate flowers is normal, whereas in functionally staminate ones a pistillode with degenerated ovules at the tetrad stage is formed. The pollen tube transmitting tract consists of one layer of epithelial cells with a small lumen in the style and ovary.
    [Show full text]
  • FLORA of ST. JOHN, U.S. VIRGIN ISLANDS By
    1 Extracted from: FLORA OF ST. JOHN, U.S. VIRGIN ISLANDS by PEDRO ACEVEDO­RODRÍGUEZ AND COLLABORATORS (MEMOIRS OF THE NEW YORK BOTANICAL GARDEN: 78: 1­581. 1996.) INTRODUCTION The island of St. John, formerly known as St. Jan, (Map 1), belongs to the Virgin Island group, a natural appendage of the Puerto Rican bank. The islands making up the Virgin Islands group (St. Thomas, St. John, Tortola, Virgin Gorda, Anegada, and St. Croix) and Puerto Rico (Vieques, Culebra and Puerto Rico) form a geographical, geological, and biological province with many shared natural features. St. John, like most of the other Virgin Islands has a mountainous topography with very small inter mountain valleys and coastal plains. The island has an approximate area of 31 square kilometers, with an east­west axis of 11 kilometers, and a maximum north­south axis of approximately 5 kilometers. The highest point on the island is Bordeaux Mountain which reaches 387 m in elevation. The island has no permanent rivers and possesses only a few intermittent streams, which either flow toward the north or south coasts. For the most part, the soil is volcanic in origin and well­drained, with depths to bedrock ranging from 25 to 50 cm. Columbus discovered and named the Virgin Islands on his second trip to the New World in 1493. On November 14th, Columbus and his crew anchored on an island which he named Santa Cruz (St. Croix later by the French). They found the island to be inhabited by Carib Indians, but they did not record how densely populated the island was.
    [Show full text]
  • Plant Ana Tomy
    МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ PLANT ANATOMY: TRADITIONS AND PERSPECTIVES Международный симпозиум, АНАТОМИЯ РАСТЕНИЙ: посвященный 90-летию профессора PLANT ANATOMY: TRADITIONS AND PERSPECTIVES AND TRADITIONS ANATOMY: PLANT ТРАДИЦИИ И ПЕРСПЕКТИВЫ Людмилы Ивановны Лотовой 1 ЧАСТЬ 1 московский госУдАрствеННый УНиверситет имени м. в. ломоНосовА Биологический факультет АНАТОМИЯ РАСТЕНИЙ: ТРАДИЦИИ И ПЕРСПЕКТИВЫ Ìàòåðèàëû Ìåæäóíàðîäíîãî ñèìïîçèóìà, ïîñâÿùåííîãî 90-ëåòèþ ïðîôåññîðà ËÞÄÌÈËÛ ÈÂÀÍÎÂÍÛ ËÎÒÎÂÎÉ 16–22 ñåíòÿáðÿ 2019 ã.  двуõ ÷àñòÿõ ×àñòü 1 МАТЕРИАЛЫ НА АНГЛИЙСКОМ ЯЗЫКЕ PLANT ANATOMY: ТRADITIONS AND PERSPECTIVES Materials of the International Symposium dedicated to the 90th anniversary of Prof. LUDMILA IVANOVNA LOTOVA September 16–22, Moscow In two parts Part 1 CONTRIBUTIONS IN ENGLISH москва – 2019 Удк 58 DOI 10.29003/m664.conf-lotova2019_part1 ББк 28.56 A64 Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту 19-04-20097 Анатомия растений: традиции и перспективы. материалы международного A64 симпозиума, посвященного 90-летию профессора людмилы ивановны лотовой. 16–22 сентября 2019 г. в двух частях. – москва : мАкс пресс, 2019. ISBN 978-5-317-06198-2 Чaсть 1. материалы на английском языке / ред.: А. к. тимонин, д. д. соколов. – 308 с. ISBN 978-5-317-06174-6 Удк 58 ББк 28.56 Plant anatomy: traditions and perspectives. Materials of the International Symposium dedicated to the 90th anniversary of Prof. Ludmila Ivanovna Lotova. September 16–22, 2019. In two parts. – Moscow : MAKS Press, 2019. ISBN 978-5-317-06198-2 Part 1. Contributions in English / Ed. by A. C. Timonin, D. D. Sokoloff. – 308 p. ISBN 978-5-317-06174-6 Издание доступно на ресурсе E-library ISBN 978-5-317-06198-2 © Авторы статей, 2019 ISBN 978-5-317-06174-6 (Часть 1) © Биологический факультет мгУ имени м.
    [Show full text]