Naturalized Exotic Tree Species in Puerto Rico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Forest Trees of NC
FFOORREESSTT TTRREEEESS OF NORTH CAROLINA North Carolina Forest Service TWENTIETH EDITION 2012 North Carolina Department of Agriculture and Consumer Services The North Carolina Forest Service is an equal opportunity/affirmative action employer. Its programs, activities and employment practices are available to all people regardless of race, color, religion, sex, age, national origin, handicap or political affiliation. COMMON FOREST TREES OF NORTH CAROLINA ( R E V I S E D ) A POCKET MANUAL Produced by the North Carolina Department of Agriculture and Consum er Services North Carolina Forest Service Wib L. Owen, State Forester TWENTIETH EDITION 2012 Foreword Trees may be the oldest and largest living things in nature. They are closely associated with our daily lives, yet most of us know little about them and barely can tell one type of tree from another. Sixteen editions of this handy pocket guide have been printed since John Simcox Holmes, North Carolina's first State Forester, put together the first edition in 1922. Holmes' idea was to provide an easy-to-use reference guide to help people of all ages recognize many of our common forest trees on sight. That goal has not changed. Although the book has changed little, some uses of wood and general information about the trees have. Carriages and wagons, for example, aren't often made from Shagbark hickory (or anything else) anymore, and Loblolly pine now is used for making tremendous amounts of pine plywood, something unheard of in the 1920's. Keeping these changes in mind, we revised Common Forest Trees of North Carolina in 1977 and 1995. -
AMANI NATURE RESERVE an Introduction
Field Guides AMANI NATURE RESERVE an introduction This guide was developed to help participants on Tropical Biology Association field courses to learn about the Amani Nature Reserve and the forests of the East Usambara Mountains. It includes an introduction to the East Usambaras and describes the ecology, flora and fauna of the area. The history of management and conservation of the Amani Nature Reserve, together with its current status, is outlined. This publication was funded by the European Commission (B7-6200/01/0370/ENV). For any queries concerning this document please contact: Tropical Biology Association Department of Zoology Downing Street, Cambridge CB2 3EJ United Kingdom Tel: +44 (0) 1223 336619 e-mail: [email protected] © Tropical Biology Association 2007 A Banson production Printed by Swaingrove Field Guides AMANI NATURE RESERVE an introduction TBA Field Guide CONTENTS EAST USAMBARA MOUNTAINS 3 Geographical history 3 Flora and fauna of the Usambara Mountains 3 Human impacts 3 History of Amani 5 History of Amani Botanical Garden 5 FLORA OF THE EASTERN USAMBARAS & AMANI 6 Vegetation cover of the East Usambara Mountains 6 Endemic plants in Amani 7 Introduced (alien and invasive) species 7 Case study of an introduced species: Maesopsis eminii (Rhamnaceae) 8 FAUNA OF AMANI 9 Vertebrates 9 Invertebrates 13 MANAGEMENT OF AMANI NATURE RESERVE 14 Conservation 14 REFERENCES 16 2 Amani Nature Reserve EAST USAMBARA MOUNTAINS An overview Geographical history The Amani Nature Reserve is located in the East Usambara region. This is part of the Eastern Arc Mountains, an isolated mountain chain of ancient crystalline rock formed through a cycle of block faulting and erosion that stretches from the Taita Hills in Kenya down to the Southern Highlands in Tanzania. -
Low Risk, Fruit Tree, Edible Fruit, Slow-Growing, Bird-Dispersed, Zoochorous
Family: Sapindaceae Taxon: Talisia esculenta Synonym: Sapindus esculenta A. St.-Hil. (basionym) Common Name: pitomba Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 406 Host for recognized pests -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Theobroma Cacao
International Journal of Scientific Research and Management (IJSRM) ||Volume||09||Issue||02||Pages||AH-2021-330-344||2021|| Website: www.ijsrm.in ISSN (e): 2321-3418 DOI: 10.18535/ijsrm/v9i02.ah01 Disease prevalence and shade tree diversity in smallholder cocoa (Theobroma cacao) farms: case of Bundibugyo District, Western Uganda Blasio Bisereko Bwambale1, Godfrey Sseremba1,2, Julius Mwine1 1Faculty of Agriculture, Uganda Martyrs University, P.O. Box 5498, Kampala, Uganda 2National Coffee Research Institute, National Agricultural Research Organization, P.O. Box 185, Mukono, Uganda Abstract Cocoa (Theobroma cacao) growing systems in Uganda consists of shade systems with different tree species. Tree shade systems are the pure stand trees in the cocoa plantation which have been attributed to wards reducing on pests and disease incidences, shade provision, boosting fertility, Agro biodiversity, fodder and improving production. The study was aimed at identifying potential shade tree species that can minimize disease threats on cocoa farms. Eighty-two cocoa farmers were reached out of 120 cocoa farmers in Bundibugyo that possessed at least five acres of the plantation in a purposive sampling approach. Black pod disease was non-significantly associated with presence of shade tree diversities. It was established that incidence of black pod rot disease was non-significantly associated with presence of all shade tree species; association between witch’s broom disease incidence with presence of Maesopsis eminii was highly significant (χ2= 55.41, (p<0.05); Association between witch’s broom and presence of Persea Americana(χ2=9.79), (p<0.05), Eucalyptus globulus (χ2=16.71), (p<0.05), Markhamia obtusifolia (χ2=3.95),(p<0.001), schefflera actinophylla (χ2=4.32), (p<0.001), Mangifera indica (χ2=6.46), (p<0.001) was significant though these trees were planted in small numbers. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Douglas-Fir Series Psme
PSME 1 DOUGLAS-FIR SERIES Pseudotsuga menziesii PSME Patricia A. Martinez Thomas Atzet The latitudinal range of Douglas-fir is the greatest of any commercial conifer of western North America. Nearly pure stands of Douglas-fir continue south from their northern limit on Vancouver Island through western Washington, Oregon, and the Klamath and Coast Ranges of northern California as far south as the Santa Cruz Mountains. Douglas-fir behaves as a drought tolerant pioneer, with moderate tolerance to shade. It is best described as a generalist. Douglas-fir occurs in all series and at elevations ranging from sea level to 5600 feet. Rather than any particular parent material, soil depth, or aspect, Douglas-fir regeneration is associated with recently disturbed ground. Overstory presence of Douglas-fir indicates disturbance, while presence and dominance in the understory can indicate hot, dry conditions characteristic of the Series. Ponderosa pine and incense-cedar are the only major conifers with greater tolerance to drought (Minore 1979). Douglas-fir reproduces well in temperatures near 80 degrees F (Cleary and Waring 1969) and survives in less than two percent of full sunlight for at least several decades (Atzet and Waring 1970). Douglas-fir is not known, however, for its frost tolerance. Except for the isolated occurrences of climax stands of Oregon white oak and ponderosa pine, the Series occurs in the hottest, driest forest environments in southwestern Oregon. Douglas-fir grows under a wide variety of climatic conditions. Douglas-fir typically dominates the overstory in early, mid, and late seral successional stages in Temperate and Mediterranean ecosystems throughout the Pacific Northwest. -
Chestnut Oak Forest/Woodland
Classification of the Natural Communities of Massachusetts Terrestrial Communities Descriptions Chestnut Oak Forest/Woodland Community Code: CT1A3A0000 State Rank: S4 Concept: Oak forest of dry ridgetops and upper slopes, dominated by chestnut oak with an often dense understory of scrub oak, heaths, or mountain laurel. Environmental Setting: Chestnut Oak Forests/Woodlands occur as long narrow bands along dry ridges and upper slopes with thin soil over acidic bedrock. They may extend down steep, convex, rocky, often west- or south-facing slopes where soil is shallow and dry. The canopy is closed to partially open (>25% cover). There tends to be deep oak leaf litter with slow decomposition. Often many trees have multiple fire scars and charred bases; fire appears to play a role in maintaining the community occurrences. Chestnut Oak Forests/Woodlands often occur in a mosaic with closed oak or pine - oak forests down slope and more open communities above. Vegetation Description: The canopy of Chestnut Oak Forests/Woodlands is dominated, often completely, by chestnut oak (Quercus montana). Less abundant associates include other oaks (black (Q. velutina), red (Q. rubra), and/or white (Q. alba), and less commonly, scarlet (Q. coccinea)), with red maple (Acer rubrum), and white or pitch pines (Pinus strobus, P. rigida). The subcanopy layer is sparse and consists of canopy species, black birch (Betula lenta), and sassafras (Sassafras albidum). Tall shrubs are lacking or the shrub layer may have scattered tree saplings, mountain laurel (Kalmia latifolia), striped maple (Acer pensylvanicum), American chestnut (Castanea dentata), and witch hazel (Hamamelis virginiana). Short shrubs are dense in patches dominated by black huckleberry (Gaylussacia baccata) and lowbush blueberries (Vaccinium angustifolium and V. -
Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae)
Turk J Bot 31 (2007) 297-310 © TÜB‹TAK Research Article Characteristics of the Stem-Leaf Transitional Zone in Some Species of Caesalpinioideae (Leguminosae) Abdel Samai Moustafa SHAHEEN Botany Department, Aswan Faculty of Science, South Valley University - EGYPT Received: 14.02.2006 Accepted: 15.02.2007 Abstract: The vascular supply of the proximal, middle, and distal parts of the petiole were studied in 11 caesalpinioid species with the aim of documenting any changes in vascular anatomy that occurred within and between the petioles. The characters that proved to be taxonomically useful include vascular trace shape, pericyclic fibre forms, number of abaxial and adaxial vascular bundles, number and relative position of secondary vascular bundles, accessory vascular bundle status, the tendency of abaxial vascular bundles to divide, distribution of sclerenchyma, distribution of cluster crystals, and type of petiole trichomes. There is variation between studied species in the number of abaxial, adaxial, and secondary bundles, as seen in transection of the petiole. There are also differences between leaf trace structure of the proximal, middle, and distal regions of the petioles within each examined species. Senna italica Mill. and Bauhinia variegata L. show an abnormality in their leaf trace structure, having accessory bundles (concentric bundles) in the core of the trace. This study supports the moving of Ceratonia L. from the tribe Cassieae to the tribe Detarieae. Most of the characters give valuable taxonomic evidence reliable for delimiting the species investigated (especially between Cassia L. and Senna (Cav.) H.S.Irwin & Barneby) at the generic and specific levels, as well as their phylogenetic relationships. -
Asian Pacific Journal of Tropical Disease
Asian Pac J Trop Dis 2016; 6(6): 492-501 492 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Review article doi: 10.1016/S2222-1808(16)61075-7 ©2016 by the Asian Pacific Journal of Tropical Disease. All rights reserved. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw Moshera Mohamed El-Sherei1, Alia Yassin Ragheb2*, Mona El Said Kassem2, Mona Mohamed Marzouk2*, Salwa Ali Mosharrafa2, Nabiel Abdel Megied Saleh2 1Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt 2Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt ARTICLE INFO ABSTRACT Article history: The genus Sterculia is represented by 200 species which are widespread mainly in tropical and Received 22 Mar 2016 subtropical regions. Some of the Sterculia species are classified under different genera based Received in revised form 5 Apr 2016 on special morphological features. These are Pterygota Schott & Endl., Firmiana Marsili, Accepted 20 May 2016 Brachychiton Schott & Endl., Hildegardia Schott & Endl., Pterocymbium R.Br. and Scaphium Available online 21 Jun 2016 Schott & Endl. The genus Sterculia and the related genera contain mainly flavonoids, whereas terpenoids, phenolic acids, phenylpropanoids, alkaloids, and other types of compounds including sugars, fatty acids, lignans and lignins are of less distribution. The biological activities such as antioxidant, anti-inflammatory, antimicrobial and cytotoxic activities have Keywords: been reported for several species of the genus. On the other hand, there is confusion on the Sterculia Pterygota systematic position and classification of the genus Sterculia. -
Ornamental Garden Plants of the Guianas, Part 3
; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse. -
Continuous Or Batch Solid-Liquid Extraction of Antioxidant Compounds from Seeds of Sterculia Apetala Plant and Kinetic Release Study
molecules Article Continuous or Batch Solid-Liquid Extraction of Antioxidant Compounds from Seeds of Sterculia apetala Plant and Kinetic Release Study Federica Mosca 1,Gádor Indra Hidalgo 2 ID , Juliana Villasante 2 and María Pilar Almajano 2,* ID 1 Polytechnic of Milan, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” (CMIC), Piazza Leonardo da Vinci, 32, 20133 Milan, Italy; [email protected] 2 Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; [email protected] (G.I.H.); [email protected] (J.V.) * Correspondence: [email protected]; Tel.: +34-9-3401-6686 Academic Editor: Derek J. McPhee Received: 28 June 2018; Accepted: 14 July 2018; Published: 18 July 2018 Abstract: This work has been intended to investigate the antioxidant properties of compounds extracted from seeds of Sterculia apetala (a plant from Central America) in order to add further results to the relatively poor existing literature on the beneficial properties of this plant. Different extraction methodologies were used such as batch or continuous extraction conditions using water or ethanol 50% as solvents. The kinetic study has allowed estimation of the effective diffusion coefficients in a continuous solid-liquid extraction, highlighting the strict dependence of the diffusion rate and temperature and kind of solvent, showing the highest diffusion rate with ethanol 50% at 60 ◦C. The comparison between different techniques and two solvents led to the selection of water as the best extraction solvent while batch mechanically-agitated extraction was the most efficient mode, with the benefits of use of an environmental-friendly solvent and reduction in process time to achieve a high amount of extracted phenolic compounds.