Mediterranean Fruit Fly, Ceratitis Capitata (Wiedemann) (Insecta: Diptera: Tephritidae)1 M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cadmium Contamination in Orchard Soils and Fruit Trees and Its Potential Health Risk in Guangzhou, China
ARTICLE IN PRESS + MODEL http://www.paper.edu.cn Environmental Pollution xx (2005) 1e7 Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China J.T. Li a, J.W. Qiu b, X.W. Wang a, Y. Zhong a, C.Y. Lan a,*, W.S. Shu a,* a School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, PR China b Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, PR China Received 6 August 2005; received in revised form 19 September 2005; accepted 14 October 2005 Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans. Abstract This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0e24 times and 4.0e10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04e0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents. -
Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration -
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Pouteria Sapota
Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana). -
Artabotrys Pachypetalus (Annonaceae), a New Species from China
PhytoKeys 178: 71–80 (2021) A peer-reviewed open-access journal doi: 10.3897/phytokeys.178.64485 RESEARCH ARTICLE https://phytokeys.pensoft.net Launched to accelerate biodiversity research Artabotrys pachypetalus (Annonaceae), a new species from China Bine Xue1, Gang-Tao Wang2, Xin-Xin Zhou3, Yi Huang4, Yi Tong5, Yongquan Li1, Junhao Chen6 1 College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China 2 Hangzhou, Zhejiang, China 3 Key Laboratory of Plant Resourc- es Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China 4 Guangzhou Linfang Ecology Co., Ltd., Guangzhou, Guangdong 510520, China 5 School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China 6 Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore Corresponding author: Junhao Chen ([email protected]) Academic editor: T.L.P. Couvreur | Received 16 February 2021 | Accepted 3 May 2021 | Published 27 May 2021 Citation: Xue B, Wang G-T, Zhou X-X, Huang Y, Tong Y, Li Y, Chen J (2021) Artabotrys pachypetalus (Annonaceae), a new species from China. PhytoKeys 178: 71–80. https://doi.org/10.3897/phytokeys.178.64485 Abstract Artabotrys pachypetalus sp. nov. is described from Guangdong, Guangxi, Guizhou, Hunan and Jiangxi in China. A detailed description, distribution data, along with a color plate and a line drawing are provided. In China, specimens representing this species were formerly misidentified asA. multiflorus or A. hong- kongensis (= A. blumei). Artabotrys blumei typically has a single flower per inflorescence, whereas both Artabotrys pachypetalus and A. multiflorus have multiple flowers per inflorescence. -
Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance
ABSTRACT VANGESSEL, CARL JOSEPH. Disease Resistance in Winter Wheat: Mapping Resistance to Stem Rust, Stripe Rust, and Powdery Mildew, and Genotype Screening of Breeding Germplasm for Disease Resistance. (Under the direction of Dr. David Marshall). Wheat production worldwide faces many challenges including fungal pathogens which can reduce growth, nutrient content, and yield. As the global population continues to increase, it is important to maximize production of wheat which provides a significant proportion of the human diet. Wheat breeders and pathologists are addressing the pathogen threat to wheat by breeding cultivars with improved resistance. However, as pathogen populations mutate and overcome resistance, it is important to identify sources of resistance to new pathogen races and understand the genetics of resistance in commercial cultivars. Stem rust (Puccinia graminis), stripe rust (Puccinia striiformis), and powdery mildew (Blumeria graminis) are among the most common and aggressive pathogens of wheat occurring worldwide. The stem rust resistance gene Sr31 was reliably effective until being overcome in 1999 by the race Ug99. This new race of stem rust has since evolved to include 12 related races and are potentially virulent to a majority of commercially produced wheat globally. The soft red winter wheat (SRWW) line, MD01W28- 08-11, was identified as having adult plant resistance (APR) to Ug99 in Njoro, Kenya. This line was crossed with the susceptible SRWW cultivar Coker 9553 and the subsequent 279 doubled haploid (DH) population used for linkage mapping analysis to better characterize the source of stem rust APR. A linkage map with 3,159 SNPs was produced that identified a significant quantitative trait loci (QTL) on the short arm of chromosome 6D and two QTL on the long arms of chromosomes 2B and 4B. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang -
Distribution and Frequency of Wheat Stem Rust Races (Puccinia Graminis F
©2018 Scienceweb Publishing Journal of Agricultural and Crop Research Vol. 6(5), pp. 88-96, November 2018 ISSN: 2384-731X Research Paper Distribution and frequency of wheat stem rust races (Puccinia graminis f. sp. tritici) in Ethiopia Netsanet Bacha Hei1* • Tsegaab Tesfaye1 • Getaneh Woldeab1 • Endale Hailu1 • Bekele Hundie2 • Daniel Kassa2 • Fikirte Yirga2 • Fufa Anbessa3 • Wubishet Alemu4 • Teklay Abebe5 • Miruts Legesse5 • Alemar Seid6 • Tesfaye Gebrekirstos7 1Ethiopian Institute of Agricultural Research, Ambo Plant Protection Research Center, Ambo, Ethiopia. 2Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia. 3Oromia Agricultural Research Institute, Bore Agricultural Research Center, Bore, Ethiopia. 4Oromia Agricultural Research Institute, Sinana Agricultural Research Center, Bale Robe, Ethiopia. 5Tigray Agricultural Research Institute, Alamata Agricultural Research Center, Alamata, Ethiopia. 6Southern Agricultural Research Institute, Areka Agricultural Research Center, Ethiopia. 7Tigray Agricultural Research Institute, Mekele Agricultural Research Center, Mekele, Ethiopia. *Corresponding author. E-mail: [email protected]. Accepted 6th July, 2018 Abstract. Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is one of the most important diseases of wheat in Ethiopia. The stem rust pathogen is capable to rapidly develop new virulence to resistance genes owing to mutation and genetic recombination. Ethiopian highlands are known hot spots for the rapid evolution and spread of new rust races. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of the rust fungus were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Three hundred and forty- seven samples were analyzed in 2014 and 2015 cropping seasons from Oromia, Amhara, Tigray and Southern Nations and Nationalities Peoples’ regions. -
Structure of Nora Virus at 2.7 Å Resolution and Implications for Receptor Binding, Capsid Stability and Taxonomy
This document is downloaded from the VTT’s Research Information Portal https://cris.vtt.fi VTT Technical Research Centre of Finland Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy Laurinmäki, Pasi; Shakeel, Shabih; Ekström, Jens Ola; Mohammadi, Pezhman; Hultmark, Dan; Butcher, Sarah J. Published in: Scientific Reports DOI: 10.1038/s41598-020-76613-1 Published: 01/12/2020 Document Version Publisher's final version License CC BY Link to publication Please cite the original version: Laurinmäki, P., Shakeel, S., Ekström, J. O., Mohammadi, P., Hultmark, D., & Butcher, S. J. (2020). Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy. Scientific Reports, 10(1), [19675]. https://doi.org/10.1038/s41598-020-76613-1 VTT By using VTT’s Research Information Portal you are bound by the http://www.vtt.fi following Terms & Conditions. P.O. box 1000FI-02044 VTT I have read and I understand the following statement: Finland This document is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of this document is not permitted, except duplication for research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered for sale. Download date: 03. Oct. 2021 www.nature.com/scientificreports OPEN Structure of Nora virus at 2.7 Å resolution and implications for receptor binding, capsid stability and taxonomy Pasi Laurinmäki 1,2,7, Shabih Shakeel 1,2,5,7, Jens‑Ola Ekström3,4,7, Pezhman Mohammadi 1,6, Dan Hultmark 3,4 & Sarah J. -
Mango Fruit Fly, Ceratitis Cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G
EENY286 Mango Fruit Fly, Ceratitis cosyra (Walker) (Insecta: Diptera: Tephritidae)1 G. J. Steck2 Introduction Fruit flies known as Ceratitis giffardi Bezzi and Ceratitis sarcocephali (Bezzi) may be the same as C. cosyra, but the The mango fruit fly, Ceratitis cosyra (Walker), is also taxonomy remains ambiguous (De Meyer 1998). commonly known as the marula fruit fly, based on its common occurrence in these host plants. Marula is a native African fruit related to mango and sometimes known Description locally as wild plum. This fly is a serious pest in smallholder Body and wing color yellowish; sides and posterior of tho- and commercial mango across sub-Saharan Africa, where it rax prominently ringed with black spots, dorsum yellowish is more destructive than either the Mediterranean fruit fly except for two tiny black spots centrally and two larger (Medfly; Ceratitis capitata (Wiedemann)) or the Natal fruit black spots near scutellum; scutellum with three wide, black fly (Ceratitis rosa Karsch) (Malio 1979, Labuschagne et al. stripes separated by narrow yellow stripes; wing length 4–6 1996, Javaid 1979, De Lima 1979, Rendell et al. 1995, Lux et mm, costal band and discal crossband joined. Adults are al. 1998). similar in size, coloration, and wing markings to Medfly. However, the thorax of Medfly has much more black, and The fly’s impact is growing along with the more widespread the apex of its scutellum is solid black; the costal band and commercialization of mango. Late maturing varieties of discal crossband of the Medfly wing are not joined. mango suffer most in Zambia (Javaid 1986). -
"Plant Anatomy". In: Encyclopedia of Life Sciences
Plant Anatomy Introductory article Gregor Barclay, University of the West Indies, St Augustine, Trinidad and Tobago Article Contents . Introduction Plant anatomy describes the structure and organization of the cells, tissues and organs . Meristems of plants in relation to their development and function. Dermal Layers . Ground Tissues Introduction . Vascular Tissues . The Organ System Higher plants differ enormously in their size and appear- . Acknowledgements ance, yet all are constructed of tissues classed as dermal (delineating boundaries created at tissue surfaces), ground (storage, support) or vascular (transport). These are meristems arise in the embryo, the ground meristem, which organized to form three vegetative organs: roots, which produces cortex and pith, and the procambium, which function mainly to provide anchorage, water, and nutri- produces primary vascular tissues. In shoot and root tips, ents;stems, which provide support;and leaves, which apical meristems add length to the plant, and axillary buds produce food for growth. Organs are variously modified to give rise to branches. Intercalary meristems, common in perform functions different from those intended, and grasses, are found at the nodes of stems (where leaves arise) indeed the flowers of angiosperms are merely collections of and in the basal regions of leaves, and cause these organs to leaves highly modified for reproduction. The growth and elongate. All of these are primary meristems, which development of tissues and organs are controlled in part by establish the pattern of primary growth in plants. groups of cells called meristems. This introduction to plant Stems and roots add girth through the activity of anatomy begins with a description of meristems, then vascular cambium and cork cambium, lateral meristems describes the structure and function of the tissues and that arise in secondary growth, a process common in organs, modifications of the organs, and finally describes dicotyledonous plants (Figure 2).