LIFE Is Precious

Total Page:16

File Type:pdf, Size:1020Kb

LIFE Is Precious FAUNA LIFE is precious. THE FLORA, FAUNA, & MARINE LIFE OF SECRET BAY. THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY 1 FAUNA 2 THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY Flora ............................................................................................................................... 6 Fauna ............................................................................................................................. 20 Marine Life ............................................................................................................... 36 3 FAUNA Secret Bay Resort sits on a point overlooking what is now known as Prince Rupert’s Bay. After Dominica was ceded to the British in the 1700’s, plans were drawn to make Ports- mouth the island’s capital. However, due to the prevalence of yellow fever and malaria at the time, the capital was instead relocated to its current location in Roseau. Had that been the case, how different things would have looked! The green hillsides would likely have been replaced with buildings and the necessary infrastructure, and the bay, a thriving commercial harbour, not the peaceful scene you see before you. So instead, let’s travel into the past, to a time when the Europeans first sighted the island. The area was known then as Ou-you-hao by the Kalinago. It was the site of a major village, and their main settlement lay safely on the upper banks of the Indian River. A rough and rugged shoreline, the beach continued around the bay interrupted only by the swamps and marshlands. Rich forests with tall old trees abutted the sand and Indian River flowed freely into the sea. The Kalinago would have hunted crabs, birds and iguanas much like their hunter gathering ancestors, but they were also farmers, and expert seafarers. They cleared portions of land to farm maize and cassava, and they fished and traded with islanders as far north as Puerto Rico in canoes carved from the gommier tree. Dominica was uniquely located in the path of the northeasterly trade winds, and sailing ships carried on the canary current would arrive in the Caribbean through the channel between Dominica and Guadeloupe. After days at sea and in need of replenishment, Ou- you-hao, later known as Prince Rupert’s Bay was a popular stopping off point, and trading between the Europeans and Kalinago islanders ensued. Fresh water, food and wood were in high demand. Imagine the scene as it was, massive ships anchored in the forested bay and as the Kalinago islanders would greet the ships in canoes full of supplies. Because of the Kali- nago resistance, Dominica remained a raw and wild island in a time when all surrounding lands were being heavily colonized by European nations. During the time of African Slave trade, Africans who were able to escape from a neighboring island or anchored ship, would find refuge in Dominica’s forests, setting the foundations for Dominica’s thriving Maroon population, or Negre Mawon. Over the years, the bay saw much change. Demand for wood increased as the other islands exhausted their supplies. The west coast was an ideal place for harvesting trees, and many of the large old trees that grew here quickly disappeared, changing the landscape. As agricul- ture took hold, the land became exhausted and eroded. Plants and animals were introduced and the west coast you see today is a land in recovery. Secret Bay Resort has worked hard to preserve and re-establish the wildlife that thrives 4 THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY FAUNA here. It is not just about creating a place to stay, but also capturing Dominica in a time when her land and wildlife were valued not just for what they could provide, but as cohabitants in a precious ecosystem. In this booklet, we glimpse into the flora, fauna and marine life that make up our little piece of paradise. Secret Bay offers a number of experiences which allow the explorer in each of us to be set free, as, through our experiences, we can observe, under- stand and appreciate the natural world around us. THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY 5 FA FLORA THE FLORA, FAUNA, WILDLIFE & MARINE LIFE OF SECRET BAY. 6 THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY AUNA FAUNA With such a mountainous ter- rain, Dominica is a treasure trove of biodiversity. Secret Bay sits in the rain shadow of Dominica’s highest mountain Morne Dia- blotins, which means conditions here are drier than in other parts of the island. Known as dry scrub woodland, the naturally occur- ring vegetation found on this leeward coast has evolved ways to tolerate dry conditions, an abun- dance of sunshine and saltwater. THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY 7 Coastal Flora FLORA Whether endemic or introduced, the flora of Dominica make for an interesting and varied landscape. Many of the introduced plants were brought over during European col- onization, from Africa or the pacific islands where there exists similar climates. Coccoloba pubescens Coccoloba uvifera Family name: Polygonaceae Family name: Polygonaceae Common name: Grandleaf Sea- Common name: Seagrape grape Local name: Wézinyé bòd-lamè Local name: Wézinyé Grand feuille Range: Native to Caribbean Coasts Range: Native to Caribbean Coasts Fun Facts: A popular landscaping Fun Facts: Flourishes in coastal set- plant, the reddish fruits are edible, tings due to its high salt and drought used to make jams, jellies, wine and tolerance. Large leaves can be used vinegar. It can also be used as a dye as a makeshift umbrella. and for the tanning of leather. Pisonia fragrans Homalium racemosum Casearia decandra Flacourtiaceae Family name: Nyctaginaceae Family name: Salicaceae Family name: Wild Cherry Local name: Mapou Local name: Acoma, Hèt, White Common name: Native to Caribbean Coasts Range: Native to Tropical Americas Cogwood Range: Sometimes referred to Fun Facts: This evergreen tree Range: Native to Caribbean Coasts Fun Facts: as a honey plant due to their use common to the coast, produces pale Fun Facts: A member of the willow yellow flowers. family, its hard, heavy and strong by honeybees to collect nectar and wood is used in construction. The pollen for making honey. root and leaves are known to con- tain medicinal properties. 8 THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY Coastal Flora FLORA Pimenta racemosa Eugenia ligustrina Clusia minor Family name: Myrtaceae Family name: Myrtaceae Family name: Combretaceae Local name: Bwa denn, Bay Leaf Local name: Birchberry, Méwiz Local name: Kaklen, Lagali, Zab- Tree Range: Native to the Caribbean wiko-mawon Range: Native to the Caribbean region Range: Native to Caribbean Region region Fun Facts: Found scattered within and Central America Fun Facts: The leaves are used in woodland forests. Fun Facts: Found in damp areas, cooking and to make bay oil which it derived its Latin name Clusia is distilled to produce bay rum. Bay from French botanist Carolus rum is used as a cologne, cleaning Clusius who is responsible for the agent or even mosquito repellent. development of the tulip, potato and chestnut. Terminalia Catappa Ceiba pentandra (occidentalis) Byrsonima coriacea var. spicata Combretaceae Bombaceae Family name: Family name: Family name: Malphighiacea Indian Almond, Fòmajé, Flo Tree, Silk Local name: Local name: Local name: Bwa tan, Serret, Bois Almond, Zamann Cotton, Kapok Marie, Mowisif Asia, Africa, India, Australia Native to Caribbean and Range: Range: Range: Native to Caribbean, South Fun Facts: This introduced decidu- Central America region & Central America ous tree flourishes in coastal areas. It This commercial tree Fun Facts: Fun Facts: Found in damp coastal is uncertain where it originated as it has many uses. The seed pods areas and lands that have been has been so widely spread. The fruit produce cotton-like fluff which is degraded by farming. are edible and leaves change color used as alternative to down. Its bark before falling. and seeds also have some commer- cial use. Flowers are frequented by honeybees. THE FLORA, FAUNA & MARINE LIFE OF SECRET BAY 9 Coastal Flora FLORA Hippomane mancinella Margaritaria nobilis Andira inermis Euphorbiaceae Euphorbiaceae Family name: Family name: Family name: Fabaceae Manjini, Manchineel Mil-bwanch; Mille Local name: Local name: Local name: Angelin, Anjlen, Range: Native to Caribbean & Branches Cabbage Tree Tropical Americas Caribbean and Tropical Range: Range: Native southern Mexico Fun Facts: Known as beach apple, Americas and Central America, introduced to be careful around this tree, although Fun Facts: A fast growing orna- Caribbean, Florida, Africa. endangered it is considered on of mental tree that can be used in Fun Facts: This nitrogen-fixing the most poisonous trees in the landscaping and good for reestab- tree produces beautiful pink flowers. world. All parts of the tree are lishing woodlands, it produces a Its wood can be used for lumbar and toxic. bright blue fruit. its bark is known to have various medical properties. Hymenaea courbaril Delonix regia Haematoxylum campechianum Fabaceae Fabaceae Family name: Family name: Family name: Fabaceae Coubaril, Koubawi, Flamboyant, Shak- Local name: Local name: Local name: Campech, Kanpèch, Locust, Kas, Stinktoe shak tree, Flame tree Logwood, Bloodwood Caribbean and Tropical Endemic to Madagascar, but Range: Range: Range: Tropical Americas Americas introduced to tropical and subtropi- Fun Facts: The wood produces a Fun Facts: A tropical hardwood cal regions around the world. versatile dye, used on textiles and used in furniture and flooring, the Fun Facts: Notable for its fern-
Recommended publications
  • (2007) a Photographic Field Guide to the Reptiles and Amphibians Of
    A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species.
    [Show full text]
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
    Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Phylogenetic Relationships and Historical Biogeography of Tribes and Genera in the Subfamily Nymphalinae (Lepidoptera: Nymphalidae)
    Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society 0024-4066The Linnean Society of London, 2005? 2005 862 227251 Original Article PHYLOGENY OF NYMPHALINAE N. WAHLBERG ET AL Biological Journal of the Linnean Society, 2005, 86, 227–251. With 5 figures . Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae) NIKLAS WAHLBERG1*, ANDREW V. Z. BROWER2 and SÖREN NYLIN1 1Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden 2Department of Zoology, Oregon State University, Corvallis, Oregon 97331–2907, USA Received 10 January 2004; accepted for publication 12 November 2004 We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well-studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1-alpha (EF1-a) and 400–403 bp of wing- less (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • Croton Production and Use1 Robert H
    ENH878 Croton Production and Use1 Robert H. Stamps and Lance S. Osborne2 FAMILY: Euphorbiaceae GENUS: Codiaeum SPECIFIC EPITHET: variegatum CULTIVARS: ‘Banana’, ‘Gold Dust’, ‘Mammy’, ‘Norma’, ‘Petra’, ‘Sunny Star’ and many others. Crotons have been popular in tropical gardens for centuries. Crotons grow into shrubs and small trees in their native habitats of India, Malaysia, and some of the South Pacific islands. Few other plants can surpass them in both foliage color and leaf shape variation. Leaf colors range from reds, oranges and yellows to green with all combinations of variegated colors. Leaf shapes vary from broad and elliptical to narrow and almost linear. Leaf blades range from flat to cork-screw-shaped. Since some cultivars are tolerant of interior environments, crotons have also become very popular as interior potted foliage plants. One additional point, often overlooked, is that foliage of crotons Figure 1. Crotons are useful for adding color to floral arrangements, is excellent material for use in floral arrangements. Both landscapes, and interiorscapes. individual leaves and entire branches can be used in floral Credits: Robert Stamps, UF/IFAS designs. 1. This document is ENH878, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date December 2002. Revised Revised May 2009 and March 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication. 2. Robert H. Stamps, professor of Environmental Horticulture and Extension Cut Foliage Specialist; and Lance S. Osborne, professor of Entomology; UF/ IFAS Mid-Florida Research and Education Center, Apopka, FL. The use of trade names in this publication is solely for the purpose of providing specific information.
    [Show full text]
  • Aristolochic Acids Affect the Feeding Behaviour and Development of Battus Polydamas Archidamas Larvae (Lepidoptera: Papilionidae: Troidini)
    Eur. J. Entomol. 106: 357–361, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1462 ISSN 1210-5759 (print), 1802-8829 (online) Aristolochic acids affect the feeding behaviour and development of Battus polydamas archidamas larvae (Lepidoptera: Papilionidae: Troidini) CARLOS F. PINTO1, ALEJANDRA J. TRONCOSO1, ALEJANDRO URZÚA2 and HERMANN M. NIEMEYER1* 1 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 2 Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago-33, Chile Key words. Lepidoptera, Papilionidae, Battus polydamas archidamas, Aristolochia chilensis, aristolochic acid content, foraging substrate, larval development Abstract. The feeding behaviour of specialist butterflies may be affected by the mechanical and chemical characteristics of the tis- sues of their host-plants. Larvae of the butterfly, Battus polydamas archidamas feed only on Aristolochia chilensis, which contains aristolochic acids. We studied the oviposition pattern of adults and the foraging of larvae of B. polydamas archidamas over time in relation to variations in hardness of the substrate and concentration of aristolochic acids in different plant tissues. We further tested the effect of two artificial diets containing different concentrations of aristolochic acids on larval performance. B. polydamas archi- damas oviposited mostly on young leaves and the larvae fed on this tissue until the second instar. Third instar larvae fed also on mature leaves and fourth and higher instars fed also on stems. Young leaves are softer and contain higher concentrations of aris- tolochic acids than mature leaves, and stems are both harder and contain a high concentration of aristolochic acids. Larvae reared on artificial diets containing a high concentration of aristolochic acids suffered less mortality and were heavier than those reared on a diet with a lower concentration of aristolochic acids, which suggests they are phagostimulatory.
    [Show full text]
  • A Molecular Phylogeny of the Neotropical Butterfly Genus Anartia
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 26 (2003) 46–55 www.elsevier.com/locate/ympev A molecular phylogeny of the neotropical butterfly genus Anartia (Lepidoptera: Nymphalidae) Michael J. Blum,a,b,* Eldredge Bermingham,b and Kanchon Dasmahapatrab,c a Department of Biology, Duke University, Durham, NC 27705, USA b Smithsonian Tropical Research Institute, Naos Island Molecular Laboratories, Unit 0948, APO-AA 34002-0948, Panama, FL, USA c Department of Biology, Galton Laboratory, University College, 4 Stephenson Way, London NW1 2HE, UK Received 2 August 2001; received in revised form 17 June 2002 Abstract While Anartia butterflies have served as model organisms for research on the genetics of speciation, no phylogeny has been published to describe interspecific relationships. Here, we present a molecular phylogenetic analysis of Anartia species relationships, using both mitochondrial and nuclear genes. Analyses of both data sets confirm earlier predictions of sister species pairings based primarily on genital morphology. Yet both the mitochondrial and nuclear gene phylogenies demonstrate that Anartia jatrophae is not sister to all other Anartia species, but rather that it is sister to the Anartia fatima–Anartia amathea lineage. Traditional bi- ogeographic explanations for speciation across the genus relied on A. jatrophae being sister to its congeners. These explanations invoked allopatric divergence of sister species pairs and multiple sympatric speciation events to explain why A. jatrophae flies alongside all its congeners. The molecular phylogenies are more consistent with lineage divergence due to vicariance, and range expansion of A. jatrophae to explain its sympatry with congeners. Further interpretations of the tree topologies also suggest how morphological evolution and eco-geographic adaptation may have set species range boundaries.
    [Show full text]
  • Sequestration of Aristolochic Acids from Meridic Diets by Larvae of Battus Polydamas Archidamas (Papilionidae: Troidini)
    Eur. J. Entomol. 108: 41–45, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1585 ISSN 1210-5759 (print), 1802-8829 (online) Sequestration of aristolochic acids from meridic diets by larvae of Battus polydamas archidamas (Papilionidae: Troidini) CARLOS F. PINTO1, ALEJANDRO URZÚA2 and HERMANN M. NIEMEYER1* 1Laboratorio de Química Ecológica, Universidad de Chile, Casilla 653, Santiago, Chile 2Laboratorio de Química Ecológica, Universidad de Santiago de Chile, Casilla 40, C-33 Santiago, Chile Key words. Lepidoptera, Papilionidae, Battus polydamas archidamas, Aristolochia chilensis, aristolochic acids, sequestration of toxins, uptake of toxins Abstract. Larvae of the butterfly, Battus polydamas archidamas (Papilionidae: Troidini) feed exclusively on aristolochic acid (AAs)-containing Aristolochia species (Aristolochiaceae). The distribution of sequestrated AAs in the tissues (body, integument and osmeterial secretions) of B. polydamas archidamas larvae during their development, when fed on a meridic diet containing either a higher or lower concentration of AAs (AAI and AAII) than occurs naturally in the aerial tissues of their host plant, was determined. Accumulation of AAs in the body and integument was proportional to the weight of larvae and greater in the larvae that fed on the diet containing the higher concentration of AAs. Phenolic AAs (AAIa and AAIVa) not present in the diets were found in all larval tissues examined. Integument and body extracts had a higher AAI/AAII ratio than in the original diet and also a relatively high AAIa/AAIVa ratio, suggesting a preferred AAII to AAIa transformation in those larval tissues. In the osmeterial secretion, the value of the AAI/AAII ratio was similar to that in the diets and the AAIa/AAIVa ratio close to 1, which suggests that hydroxylation of AAI to AAIVa and of AAII to AAIa occur to similar extents.
    [Show full text]
  • Allamanda Cathartica Linn. Apocynaceae: a Mini Review
    International Journal of Herbal Medicine 2019; 7(4):29-33 E-ISSN: 2321-2187 P-ISSN: 2394-0514 IJHM 2019; 7(4): 29-33 Allamanda cathartica Linn. Apocynaceae: A mini Received: 10-05-2019 Accepted: 14-06-2019 review Chandreyi Ghosh Department of Biotechnology, Chandreyi Ghosh, Labani Hazra, Sudip Kumar Nag, Sayantan Sil, Techno India University, Kolkata, West Bengal, India Alolika Dutta, Swagata Biswas, Maitrayee Biswas, Pranabesh Ghosh and Sirshendu Chatterjee Labani Hazra Department of Biotechnology, Techno India University, Abstract Kolkata, West Bengal, India Allamanda cathartica Linn. (Family –Apocynaceae) is a perennial shrub, found in various parts of the world. The common name of the plant is Golden Trumpet flower, and in Bengali, it is known as Sudip Kumar Nag Harkakra. The plant is also known to deal with heat and different toxic products; it activates blood Department of Biotechnology, circulation and diuresis. It works well against snake bite. In traditional medicinal practices, the plant is Techno India University, used to cure skin infection, cold and cough, and various other inflammations. The plant possesses various Kolkata, West Bengal, India secondary metabolite substances like flavonoids, polyphenols, iridoids, tannins, and alkaloids. Various pharmacological studies concluded some notable bioactivities of the plant such as anti-inflammatory, Sayantan Sil anti-microbial, wound healing, etc. This review aims to explain the overviews of the various uses and Department of Biotechnology, prospects as well as agricultural, taxonomical, phytochemical, pharmacological, and toxicological areas Techno India University, of the Allamanda cathartica. Kolkata, West Bengal, India Alolika Dutta Keywords: Allamanda cathartica, Harkakra, traditional medicine, phytopharmacology Department of Biotechnology, Techno India University, Introduction Kolkata, West Bengal, India Allamanda cathartica Linn.
    [Show full text]