Coefficients of Conservatism Values and the Floristic Quality Index for the Vascular Plants of South Florida
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Tripanocide and Antibacterial Activity of Alvaradoa Subovata Cronquist Extracts
Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MARTÍNEZ, M. Laura; TRAVAINI, M. Lucía; RODRIGUEZ, M. Victoria; ORELLANO, Elena; NOCITO, Isabel; SERRA, Esteban; GATTUSO, Martha; CORTADI, Adriana Tripanocide and antibacterial activity of Alvaradoa subovata Cronquist extracts Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 12, núm. 3, mayo, 2013, pp. 302-312 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85626383006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2013 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 12 (3): 302 - 312 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article Tripanocide and antibacterial activity of Alvaradoa subovata Cronquist extracts [Actividad tripanocida y antibacteriana de extractos de Alvaradoa subovata Cronquist] M. Laura MARTÍNEZ1, M. Lucía TRAVAINI1, M. Victoria RODRIGUEZ1, Elena ORELLANO2, Isabel NOCITO3, Esteban SERRA3, Martha GATTUSO1 & Adriana CORTADI1. 1Área Biología Vegetal 2Área Biología Molecular 3Área Parasitología. Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531. S2002LRK Rosario, Argentina Contactos | Contacts: M. Laura MARTÍNEZ - E-mail address: [email protected] Abstract We studied antioxidant, antibacterial and tripanocide activities of Alvaradoa subovata extracts. The ethanolic extracts showed the greatest DPPH radical scavenging capacity, especially that of bark with an IC50 = 4.7 ± 0.18 µg/mL. -
Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and Trnl–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 12 2007 Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data Kioumars Ghamkhar University of New England, Armidale, New South Wales, Australia Adam D. Marchant Royal Botanic Gardens, Sydney, New South Wales, Australia Karen L. Wilson Royal Botanic Gardens, Sydney, New South Wales, Australia Jeremy J. Bruhl University of New England, Armidale, New South Wales, Australia Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Ghamkhar, Kioumars; Marchant, Adam D.; Wilson, Karen L.; and Bruhl, Jeremy J. (2007) "Phylogeny of Abildgaardieae (Cyperaceae) Inferred from ITS and trnL–F Data," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 12. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/12 Aliso 23, pp. 149–164 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENY OF ABILDGAARDIEAE (CYPERACEAE) INFERRED FROM ITS AND trnL–F DATA KIOUMARS GHAMKHAR,1,2,4 ADAM D. MARCHANT,2 KAREN L. WILSON,2 AND JEREMY J. BRUHL1,3 1Botany, Centre for Ecology, Evolution, and Systematics, University of New England, Armidale, New South Wales 2351, Australia; 2National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Mrs Macquaries Road, Sydney, New South Wales 2000, Australia 3Corresponding author ([email protected]) ABSTRACT Within the tribe Abildgaardieae, the relationships between Fimbristylis and its relatives have not been certain, and the limits of Fimbristylis have been unclear, with Bulbostylis and Abildgaardia variously combined with it and each other. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Alvaradoa Amorphoides Germination at Low Water Potential and the Role of the Antioxidant System
Botanical Sciences 93 (2): -9, 205 PHYSIOLOGY DOI: 0.729/botsci.6 ALVARADOA AMORPHOIDES GERMINATION AT LOW WATER POTENTIAL AND THE ROLE OF THE ANTIOXIDANT SYSTEM VERÓNICA HERNÁNDEZ-PÉREZ1, JUDITH MÁRQUEZ-GUZMÁN2, SOBEIDA SÁNCHEZ-NIETO3 1, 4 AND ROCÍO CRUZ-ORTEGA 1Instituto de Ecología, Departamento de Ecología Funcional, Universidad Nacional Autónoma de México, México, D.F., Mexico 2Facultad de Ciencias, Laboratorio de Desarrollo de Plantas, Universidad Nacional Autónoma de México, México, D.F., Mexico 3Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, México, D.F., Mexico 4Author for correspondence: Rocío Cruz-Ortega: [email protected] Abstract: Tropical dry forests are characterized by a high diversity of tree communities and extremely heterogeneous water avai- lability. The tree Alvaradoa amorphoides is a pioneer species of the tropical dry forest found in Xochicalco, Morelos, Mexico. To determine the water requirements for this species to germinate, we evaluated the seed germination rates under field and labo- ratory conditions. In the field, the seeds had an overall mean germination rate of 42%, but the rate varied between the different sites independent of the soil relative humidity and landscape. Alvaradoa amorphoides seeds exposed to a water potential of -0.5 MPa delayed germination, extending Phase II. At the -.0 and -.5 MPa water potentials, germination was inhibited by 80 and 00%, respectively, but the seeds remained viable. Although, the oxygen consumption did not differ between the treatments, the respiration profiles did not show the same triphasic curve as the control. The H2O2 and O2- levels were not significantly different in the seeds at the evaluated low-water potentials (-0.5 and -.0 MPa), nor were the catalase, superoxide dismutase, and gluta- thione reductase activity. -
Anti-Ulcer Activity of Albizia Procera Leaves in Different Growth Phases
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor & UGC Approved Journal) Website: www.ijirset.com Vol. 6, Issue 9, September 2017 Anti-Ulcer Activity of Albizia Procera Leaves In Different Growth Phases Ambika K*1, Jegadeesan M2 Research Scholar, Department of Environmental and Herbal science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India. *1 Formerly Head and Professor, Department of Environmental and Herbal science, Faculty of Science, Tamil University, Thanjavur, Tamil Nadu, India. 2 ABSTRACT: Clinical research has confirmed the efficacy of several plants for the treatment of gastroduodenal disease, while basic scientific research has uncovered the mechanisms by which some plants exert their therapeutic effects. Ulcers are lesions on the surface of the skin or a mucous membrane characterized by a superficial loss of tissue. Preliminary photochemical screening of this medicinal plant identified the presence of important secondary metabolites like flavonoids and tannins which are the active principles of antiulcer activity. Present study was conducted to analyze the plant Albizia procera leaves considered as gastroprotective and healing agents on ulcers in medicinal resources and beside that to gather evidence for their effectiveness. The test substances were administered as a single dose by orally. Prior to dosing, animals were kept for 12 h of fasting. Ulceration due to oral administration of ethanol was shown in the stomach section of animal models. The gastric damage as thick red lines and lesions as red areas were observed in the stomach. It was significant to note that increase in the volume, total acidity and free acidity and decreased pH of gastric juice were observed in ulcer treated rats compared to untreated control rats. -
FINAL REPORT PSRA Vegetation Monitoring 2005-2006 PC P502173
Rare Plants and Their Locations at Picayune Strand Restoration Area: Task 4a FINAL REPORT PSRA Vegetation Monitoring 2005-2006 PC P502173 Steven W. Woodmansee and Michael J. Barry [email protected] December 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to Mike Duever, Ph.D. Senior Environmental Scientist South Florida Water Management District Fort Myers Service Center 2301 McGregor Blvd. Fort Myers, Florida 33901 Table of Contents Introduction 03 Methods 03 Results and Discussion 05 Acknowledgements 38 Citations 39 Tables: Table 1: Rare plants recorded in the vicinity of the Vegetation Monitoring Transects 05 Table 2: The Vascular Plants of Picayune Strand State Forest 24 Figures: Figure 1: Picayune Strand Restoration Area 04 Figure 2: PSRA Rare Plants: Florida Panther NWR East 13 Figure 3: PSRA Rare Plants: Florida Panther NWR West 14 Figure 4: PSRA Rare Plants: PSSF Northeast 15 Figure 5: PSRA Rare Plants: PSSF Northwest 16 Figure 6: PSRA Rare Plants: FSPSP West 17 Figure 7: PSRA Rare Plants: PSSF Southeast 18 Figure 8: PSRA Rare Plants: PSSF Southwest 19 Figure 9: PSRA Rare Plants: FSPSP East 20 Figure 10: PSRA Rare Plants: TTINWR 21 Cover Photo: Bulbous adder’s tongue (Ophioglossum crotalophoroides), a species newly recorded for Collier County, and ranked as Critically Imperiled in South Florida by The Institute for Regional Conservation taken by the primary author. 2 Introduction The South Florida Water Management District (SFWMD) plans on restoring the hydrology at Picayune Strand Restoration Area (PSRA) see Figure 1. -
Mangroves: Unusual Forests at the Seas Edge
Tropical Forestry Handbook DOI 10.1007/978-3-642-41554-8_129-1 # Springer-Verlag Berlin Heidelberg 2015 Mangroves: Unusual Forests at the Seas Edge Norman C. Dukea* and Klaus Schmittb aTropWATER – Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia bDepartment of Environment and Natural Resources, Deutsche Gesellschaft fur€ Internationale Zusammenarbeit (GIZ) GmbH, Quezon City, Philippines Abstract Mangroves form distinct sea-edge forested habitat of dense, undulating canopies in both wet and arid tropic regions of the world. These highly adapted, forest wetland ecosystems have many remarkable features, making them a constant source of wonder and inquiry. This chapter introduces mangrove forests, the factors that influence them, and some of their key benefits and functions. This knowledge is considered essential for those who propose to manage them sustainably. We describe key and currently recommended strategies in an accompanying article on mangrove forest management (Schmitt and Duke 2015). Keywords Mangroves; Tidal wetlands; Tidal forests; Biodiversity; Structure; Biomass; Ecology; Forest growth and development; Recruitment; Influencing factors; Human pressures; Replacement and damage Mangroves: Forested Tidal Wetlands Introduction Mangroves are trees and shrubs, uniquely adapted for tidal sea verges of mostly warmer latitudes of the world (Tomlinson 1994). Of primary significance, the tidal wetland forests they form thrive in saline and saturated soils, a domain where few other plants survive (Fig. 1). Mangrove species have been indepen- dently derived from a diverse assemblage of higher taxa. The habitat and structure created by these species are correspondingly complex, and their features vary from place to place. For instance, in temperate areas of southern Australia, forests of Avicennia mangrove species often form accessible parkland stands, notable for their openness under closed canopies (Duke 2006). -
First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales)
plants Article First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales) Alexey Shipunov 1,*, Shyla Carr 1, Spencer Furniss 1, Kyle Pay 1 and José Rubens Pirani 2 1 Minot State University, Minot, ND 58707, USA; [email protected] (S.C.); [email protected] (S.F.); [email protected] (K.P.) 2 University of São Paulo, São Paulo 01000-000, Brazil; [email protected] * Correspondence: [email protected] Received: 17 December 2019; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Picramniaceae is the only member of Picramniales which is sister to the clade (Sapindales (Huerteales (Malvales, Brassicales))) in the rosidsmalvids. Not much is known about most aspects of their ecology, geography, and morphology. The family is restricted to American tropics. Picramniaceae representatives are rich in secondary metabolites; some species are known to be important for pharmaceutical purposes. Traditionally, Picramniaceae was classified as a subfamily of Simaroubaceae, but from 1995 on, it has been segregated containing two genera, Picramnia and Alvaradoa, with the recent addition of a third genus, Nothotalisia, described in 2011. Only a few species of the family have been the subject of DNA-related research, and fewer than half of the species have been included in morphological phylogenetic analyses. It is clear that Picramniaceae remains a largely under-researched plant group. Here we present the first molecular phylogenetic tree of the group, based on both chloroplast and nuclear markers, widely adopted in the plant DNA barcoding. The main findings are: The family and its genera are monophyletic and Picramnia is sister to two other genera; some clades corroborate previous assumptions of relationships made on a morphological or geographical basis, while most parts of the molecular topology suggest high levels of homoplasy in the morphological evolution of Picramnia. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E. -
Albizia Procera 6
Albizia procera (Roxb.) Benth. Siris blanco Leguminosae Familia de las leguminosas Mimosoidea Subfamilia de las mimosas John A. Parrotta Albizia procera (Roxb.) Benth., conocido como el siris Suelos y Topografía blanco, es un árbol caducifolio de tamaño grande y de rápido crecimiento de los bosques tropicales y subtropicales de Asia El siris blanco se puede encontrar en una variedad de (36). Se le usa como un árbol de ornamento y como sombra suelos, aunque crece mejor en condiciones muy húmedas en en plantaciones de té (14, 33). Su madera se considera como suelos arcillosos o margas aluviales y bien drenados (8, 36). adecuada para muchos propósitos, y su pulpa tiene gran Su capacidad para crecer en suelos secos, arenosos, potencial para la manufactura de papel (20, 34). La goma pedregosos y superficiales la hacen una especie muy útil en exudada por el tallo se usa como un substituto para la goma la aforestación de sitios difíciles (27). Se han reportado una arábiga (2, 15) y el alto contenido de proteína de las hojas la muy buena supervivencia y unas tasas de crecimiento hacen una fuente excelente de forraje (17, 36). iniciales rápidas en pruebas de aforestación tanto en suelos salinos como alcalinos en Uttar Pradesh, en la India (18). Sin embargo, los valores de pH del suelo ideales para la especie varían entre 5.0 y 5.5, de acuerdo a estudios HABITAT efectuados en el Bangladesh Tea Research Institute (comunicación personal con A.F.M. Badrul Alam, BTRI, Area de Distribución y de Naturalización Srimangal, Bangladesh). La especie forma una asociación con Rhizobium spp. -
Paleocene–Eocene Palynomorphs from the Chicxulub Impact Crater, Mexico
Palynology ISSN: 0191-6122 (Print) 1558-9188 (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & Sean P.S. Gulick To cite this article: Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & Sean P.S. Gulick (2020): Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen, Palynology, DOI: 10.1080/01916122.2019.1705417 To link to this article: https://doi.org/10.1080/01916122.2019.1705417 View supplementary material Accepted author version posted online: 17 Dec 2019. Published online: 23 Jan 2020. Submit your article to this journal Article views: 55 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY https://doi.org/10.1080/01916122.2019.1705417 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smitha,b , Sophie Warnya,b, David M. Jarzenc, Thomas Demchuka, Vivi Vajdad and Sean P.S. Gulicke aDepartment of Geology and Geophysics, LSU, Baton Rouge, LA, USA; bMuseum of Natural Science, LSU, Baton Rouge, LA, USA; cCleveland Museum of Natural History, Cleveland, OH, USA; dSwedish Museum of Natural History, Stockholm, Sweden; eInstitute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, TX, USA ABSTRACT KEYWORDS At the end of the Cretaceous Period, an asteroid collided with the Earth and formed the Chicxulub Mexico; Paleocene; impact structure on the Yucatan Platform. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.