AUTHOR REPORT NO AVAILABLE from ABSTRACT Ons Supplied By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
Nematode Management for Bedding Plants1 William T
ENY-052 Nematode Management for Bedding Plants1 William T. Crow2 Florida is the “land of flowers.” Surely, one of the things that Florida is known for is the beauty of its vegetation. Due to the tropical and subtropical environment, color can abound in Florida landscapes year-round. Unfortunately, plants are not the only organisms that enjoy the mild climate. Due to warm temperatures, sandy soil, and humidity, Florida has more than its fair share of pests and pathogens that attack bedding plants. Plant-parasitic nematodes (Figure 1) can be among the most damaging and hard-to-control of these organisms. What are nematodes? Nematodes are unsegmented roundworms, different from earthworms and other familiar worms that are segmented (annelids) or in some cases flattened and slimy (flatworms). Many kinds of nematodes may be found in the soil of any landscape. Most are beneficial, feeding on bacteria, fungi, or other microscopic organisms, and some may be used as biological control organisms to help manage important insect pests. Plant-parasitic nematodes are nematodes that Figure 1. Diagram of a generic plant-parasitic nematode. feed on live plants (Figure 1). Credits: R. P. Esser, Florida Department of Agriculture and Consumer Services, Division of Plant Industry; used with permission. Plant-parasitic nematodes are very small and most can only be seen using a microscope (Figure 2). All plant-parasitic nematodes have a stylet or mouth-spear that is similar in structure and function to a hypodermic needle (Figure 3). 1. This document is ENY-052, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
2641-3182 08 Catalogo1 Dicotyledoneae4 Pag2641 ONAG
2962 - Simaroubaceae Dicotyledoneae Quassia glabra (Engl.) Noot. = Simaba glabra Engl. SIPARUNACEAE Referencias: Pirani, J. R., 1987. Autores: Hausner, G. & Renner, S. S. Quassia praecox (Hassl.) Noot. = Simaba praecox Hassl. Referencias: Pirani, J. R., 1987. 1 género, 1 especie. Quassia trichilioides (A. St.-Hil.) D. Dietr. = Simaba trichilioides A. St.-Hil. Siparuna Aubl. Referencias: Pirani, J. R., 1987. Número de especies: 1 Siparuna guianensis Aubl. Simaba Aubl. Referencias: Renner, S. S. & Hausner, G., 2005. Número de especies: 3, 1 endémica Arbusto o arbolito. Nativa. 0–600 m. Países: PRY(AMA). Simaba glabra Engl. Ejemplares de referencia: PRY[Hassler, E. 11960 (F, G, GH, Sin.: Quassia glabra (Engl.) Noot., Simaba glabra Engl. K, NY)]. subsp. trijuga Hassl., Simaba glabra Engl. var. emarginata Hassl., Simaba glabra Engl. var. inaequilatera Hassl. Referencias: Basualdo, I. Z. & Soria Rey, N., 2002; Fernández Casas, F. J., 1988; Pirani, J. R., 1987, 2002c; SOLANACEAE Sleumer, H. O., 1953b. Arbusto o árbol. Nativa. 0–500 m. Coordinador: Barboza, G. E. Países: ARG(MIS); PRY(AMA, CAA, CON). Autores: Stehmann, J. R. & Semir, J. (Calibrachoa y Ejemplares de referencia: ARG[Molfino, J. F. s.n. (BA)]; Petunia), Matesevach, M., Barboza, G. E., Spooner, PRY[Hassler, E. 10569 (G, LIL, P)]. D. M., Clausen, A. M. & Peralta, I. E. (Solanum sect. Petota), Barboza, G. E., Matesevach, M. & Simaba glabra Engl. var. emarginata Hassl. = Simaba Mentz, L. A. glabra Engl. Referencias: Pirani, J. R., 1987. 41 géneros, 500 especies, 250 especies endémicas, 7 Simaba glabra Engl. var. inaequilatera Hassl. = Simaba especies introducidas. glabra Engl. Referencias: Pirani, J. R., 1987. Acnistus Schott Número de especies: 1 Simaba glabra Engl. -
Annuals/Tende Abutilon 'Dwarf Red' 9 Sun/Pt.Shade Really a Red Orange, but Nonetheless a Richly Colored Floriferous Flowering Maple Which Is Quite Compact at 15-18"
Annuals/Tende Abutilon 'Dwarf Red' 9 sun/pt.shade Really a red orange, but nonetheless a richly colored floriferous flowering maple which is quite compact at 15-18". We like how it tolerates light frosts and continues to dazzle into November. 4" $10.00 Abutilon pictum 'Gold Dust' 8 pt.shade Mottled gold and green foliage on upright bushy plants, with salmon-orange flowers all year long. A great container plant! 4" $9.00 Abutilon 'Snowfall' 9 sun/pt.shade Pure white bells throughout the year,on bushy upright growing plants. Very bridal like apperance. Pinvh bamk regularly for more compact habit. 4" $10.00 Abutilon 'Victorian Lady' 9 sun/pt. shade This is the quite rare double form of flowering maple with pink flowers that resemble just opening old-fashioned rosebuds. It is difficult to propagate and so we must limit one per customer. Upright habit. 4" $12.00 Abutilon x 'Souvenier de Bonn'' 8 pt.sh/shade Striking white edged maple leaves, salmon bell-flowers veined with crimson and a sturdy upright habit make this is a great choice for large standards. 4" $10.00 Aeonium arboreum 'Scwarzkopf' 10 sun Shiny almost black fleshy leaved rosettes are born on sturdy stems that become tree-like with age. A must have specimen if you collect succulents. 4" $9.00 Alternanthera 'Gail's Choice' 8 sun/pt shade Dark maroon 1" wide leaves on sprawling stems and a vigorous habit distinguish this form of "Calico Plant". Great in pots, we also combined this with Lysimachia nummularia aurea (Golden Creeping Jenny) in our low lying wet soil are for an all summer show. -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
Redalyc.Asteráceas De Importancia Económica Y Ambiental Segunda
Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Del Vitto, Luis A.; Petenatti, Elisa M. Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Multequina, núm. 24, 2015, pp. 47-74 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42844132004 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 ISSN 1852-7329 on-line Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Asteraceae of economic and environmental importance Second part: Other useful and noxious plants Luis A. Del Vitto y Elisa M. Petenatti Herbario y Jardín Botánico UNSL/Proy. 22/Q-416 y Cátedras de Farmacobotánica y Famacognosia, Fac. de Quím., Bioquím. y Farmacia, Univ. Nac. San Luis, Ej. de los Andes 950, D5700HHW San Luis, Argentina. [email protected]; [email protected]. Resumen El presente trabajo completa la síntesis de las especies de asteráceas útiles y nocivas, que ini- ciáramos en la primera contribución en al año 2009, en la que fueron discutidos los caracteres generales de la familia, hábitat, dispersión y composición química, los géneros y especies de importancia -
Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan*
® International Journal of Plant Developmental Biology ©2010 Global Science Books Review and Advances in Style Curvature for the Malvaceae Cheng-Jiang Ruan* Key Laboratory of Biotechnology & Bio-Resources Utilization, Dalian Nationalities University, Dalian City, Liaoning 116600, China Correspondence : * [email protected] ABSTRACT The flowers of the Malvaceae with varying levels of herkogamy via style curvature have long intrigued evolutionary botanists. This review covers the flower opening process, approach herkogamy, style curvature and character evolution based on molecular phylogenetic trees, adaptive significances of style curvature and the mating system in some portions of the genera in this family. Hermaphroditic flowers of some species have showy petals and pollen and nectar rewards to pollinators. Approach herkogamy, in which stigmas are located on the top of a monadelphous stamen, has evolved as a mechanism to reduce the frequency of intra-floral self-pollination or the interference between male-female organs. Protandrous or monochogamous flowers in the fields open at about 5-7 days and 1-2 days respectively, and pollination is conducted by insects and birds. Interestingly, un-pollinated styles in some species curve when pollination fails. According to our observations and published or internet data, this curvature occurs in 23 species distributed in eight genera of four tribes (Malvavisceae, Ureneae, Hibisceae, Malveae) and appears to have evolved at least eight times. A shift to use style curvature is associated with a shift to annual or perennial herbs, and an unpredictable pollinator environment is likely an important trigger for this evolution. The adaptive significances of style curvature in the Malvaceae include delayed selfing, promotion of outcrossing or reduction in intrafloral male-female interference, sometimes two or three of which simultaneously occur in style curvature of one species (e.g., Kosteletzkya virginica). -
ANNOTATED CHECKLIST of the VASCULAR PLANTS of SAN Franciscoa
ANNOTATED CHECKLIST OF THE VASCULAR PLANTS OF SAN FRANCISCOa View of San Francisco, formerly Yerba Buena, in 1846-7, before the discovery of gold (Library of Congress) Third Edition June 2021 Compiled by Mike Wood, Co-Chairman, Rare Plants Committee California Native Plant Society - Yerba Buena Chapter ANNOTATED CHECKLIST OF THE VASCULAR PLANTS OF SAN FRANCISCO FOOTNOTES This Checklist covers the extirpated and extant native and non-native plants reported from natural and naturalistic areas within the City and County of San Francisco. These areas include lands falling under the jurisdiction of the City and County of San Francisco (e.g., the Recreation and Parks Department, the Real Estate Division, the San Francisco Public Utilities Commission, the a Department of Public Works, and the San Francisco Unified School District); the National Park Service (e.g., the Golden Gate National Recreation Area and the Presidio Trust); the California Department of Parks and Recreation; the University of California, San Francisco; the University of San Francisco; and privately owned parcels. References and data sources are listed in APPENDIX 1. b FAMILY: Family codes, family names and all genera mentioned in the Checklist are listed in APPENDIX 3. SCIENTIFIC NAME: Scientific names and taxonomy conform to the Jepson Flora Project (JFP, 2021). Taxa in BOLD TYPE are listed as endangered, threatened or rare (federal / state / CNPS). Nomenclature used in Howell, et al. (1958) is UNDERLINED. c Taxa highlighted in GRAY are indigenous to San Francisco, but which are presumed extirpated (i.e., those which have not been reported here since 1980, other than those that have been reintroduced). -
Vascular Plants of Santa Cruz County, California
ANNOTATED CHECKLIST of the VASCULAR PLANTS of SANTA CRUZ COUNTY, CALIFORNIA SECOND EDITION Dylan Neubauer Artwork by Tim Hyland & Maps by Ben Pease CALIFORNIA NATIVE PLANT SOCIETY, SANTA CRUZ COUNTY CHAPTER Copyright © 2013 by Dylan Neubauer All rights reserved. No part of this publication may be reproduced without written permission from the author. Design & Production by Dylan Neubauer Artwork by Tim Hyland Maps by Ben Pease, Pease Press Cartography (peasepress.com) Cover photos (Eschscholzia californica & Big Willow Gulch, Swanton) by Dylan Neubauer California Native Plant Society Santa Cruz County Chapter P.O. Box 1622 Santa Cruz, CA 95061 To order, please go to www.cruzcps.org For other correspondence, write to Dylan Neubauer [email protected] ISBN: 978-0-615-85493-9 Printed on recycled paper by Community Printers, Santa Cruz, CA For Tim Forsell, who appreciates the tiny ones ... Nobody sees a flower, really— it is so small— we haven’t time, and to see takes time, like to have a friend takes time. —GEORGIA O’KEEFFE CONTENTS ~ u Acknowledgments / 1 u Santa Cruz County Map / 2–3 u Introduction / 4 u Checklist Conventions / 8 u Floristic Regions Map / 12 u Checklist Format, Checklist Symbols, & Region Codes / 13 u Checklist Lycophytes / 14 Ferns / 14 Gymnosperms / 15 Nymphaeales / 16 Magnoliids / 16 Ceratophyllales / 16 Eudicots / 16 Monocots / 61 u Appendices 1. Listed Taxa / 76 2. Endemic Taxa / 78 3. Taxa Extirpated in County / 79 4. Taxa Not Currently Recognized / 80 5. Undescribed Taxa / 82 6. Most Invasive Non-native Taxa / 83 7. Rejected Taxa / 84 8. Notes / 86 u References / 152 u Index to Families & Genera / 154 u Floristic Regions Map with USGS Quad Overlay / 166 “True science teaches, above all, to doubt and be ignorant.” —MIGUEL DE UNAMUNO 1 ~ACKNOWLEDGMENTS ~ ANY THANKS TO THE GENEROUS DONORS without whom this publication would not M have been possible—and to the numerous individuals, organizations, insti- tutions, and agencies that so willingly gave of their time and expertise. -
Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).