2641-3182 08 Catalogo1 Dicotyledoneae4 Pag2641 ONAG

Total Page:16

File Type:pdf, Size:1020Kb

2641-3182 08 Catalogo1 Dicotyledoneae4 Pag2641 ONAG 2962 - Simaroubaceae Dicotyledoneae Quassia glabra (Engl.) Noot. = Simaba glabra Engl. SIPARUNACEAE Referencias: Pirani, J. R., 1987. Autores: Hausner, G. & Renner, S. S. Quassia praecox (Hassl.) Noot. = Simaba praecox Hassl. Referencias: Pirani, J. R., 1987. 1 género, 1 especie. Quassia trichilioides (A. St.-Hil.) D. Dietr. = Simaba trichilioides A. St.-Hil. Siparuna Aubl. Referencias: Pirani, J. R., 1987. Número de especies: 1 Siparuna guianensis Aubl. Simaba Aubl. Referencias: Renner, S. S. & Hausner, G., 2005. Número de especies: 3, 1 endémica Arbusto o arbolito. Nativa. 0–600 m. Países: PRY(AMA). Simaba glabra Engl. Ejemplares de referencia: PRY[Hassler, E. 11960 (F, G, GH, Sin.: Quassia glabra (Engl.) Noot., Simaba glabra Engl. K, NY)]. subsp. trijuga Hassl., Simaba glabra Engl. var. emarginata Hassl., Simaba glabra Engl. var. inaequilatera Hassl. Referencias: Basualdo, I. Z. & Soria Rey, N., 2002; Fernández Casas, F. J., 1988; Pirani, J. R., 1987, 2002c; SOLANACEAE Sleumer, H. O., 1953b. Arbusto o árbol. Nativa. 0–500 m. Coordinador: Barboza, G. E. Países: ARG(MIS); PRY(AMA, CAA, CON). Autores: Stehmann, J. R. & Semir, J. (Calibrachoa y Ejemplares de referencia: ARG[Molfino, J. F. s.n. (BA)]; Petunia), Matesevach, M., Barboza, G. E., Spooner, PRY[Hassler, E. 10569 (G, LIL, P)]. D. M., Clausen, A. M. & Peralta, I. E. (Solanum sect. Petota), Barboza, G. E., Matesevach, M. & Simaba glabra Engl. var. emarginata Hassl. = Simaba Mentz, L. A. glabra Engl. Referencias: Pirani, J. R., 1987. 41 géneros, 500 especies, 250 especies endémicas, 7 Simaba glabra Engl. var. inaequilatera Hassl. = Simaba especies introducidas. glabra Engl. Referencias: Pirani, J. R., 1987. Acnistus Schott Número de especies: 1 Simaba glabra Engl. subsp. trijuga Hassl. = Simaba glabra Engl. Acnistus achalensis Hieron. ex Seckt, nom. nud. Referencias: Pirani, J. R., 1987. = Dunalia brachyacantha Miers Simaba praecox Hassl. Sin.: Quassia praecox (Hassl.) Noot. Acnistus arborescens (L.) Schltdl. Referencias: Fernández Casas, F. J., 1988; Pirani, J. R., 1987. Sin.: Atropa arborescens L., Dunalia arborescens (L.) Subarbusto. Endémica. 0–500 m. Sleumer Países: PRY(APA, CAU, CAN). Referencias: Hunziker, A. T., 1982b; Smith, L. B. & Downs, Ejemplares de referencia: PRY[Hassler, E. 9497 (G, LIL, P)]. R. J., 1966. Arbusto. Nativa. 0–600 m. Simaba trichilioides A. St.-Hil. Países: BRA(PAR, SCA). Ejemplares de referencia: BRA[Dusén, P. K. H. 8817 (F, GH, Sin.: Quassia trichilioides (A. St.-Hil.) D. Dietr., Zwingera NY)]. trichilioides (A. St.-Hil.) Spreng. Referencias: Fernández Casas, F. J., 1988; Pirani, J. R., 1987. Arbusto. Nativa. 0–500 m. Acnistus australis (Griseb.) Griseb. = Iochroma australe Países: PRY(AMA). Griseb. Ejemplares de referencia: PRY[Hassler, E. 11436 (G, P)]. Referencias: Cabrera, A. L., 1983d; Hunziker, A. T., 1982b. Notas: Citada para Brasil sin indicar localidad o ejemplar de referencia (Pirani, 1987). Acnistus australis (Griseb.) Griseb. var. grandiflorus Griseb. = Iochroma australe Griseb. Toxicodendrum altissimum Mill. = Ailanthus altissima (Mill.) Swingle Acnistus bornmulleri Dammer = Vassobia breviflora (Sendtn.) Hunz. Zwingera trichilioides (A. St.-Hil.) Spreng. = Simaba Referencias: Hunziker, A. T., 1984d. trichilioides A. St.-Hil. Referencias: Pirani, J. R., 1987. Acnistus breviflorus Sendtn. = Vassobia breviflora (Sendtn.) Hunz. Referencias: Cabrera, A. L., 1983d; Hunziker, A. T., 1984d. Catálogo de las Plantas Vasculares del Cono Sur Solanaceae - 2963 Acnistus breviflorus Sendtn. f. glabratus Hassl. Acnistus ulei Dammer = Vassobia breviflora (Sendtn.) = Vassobia breviflora (Sendtn.) Hunz. Hunz. Referencias: Hunziker, A. T., 1984d. Referencias: Hunziker, A. T., 1982b. Acnistus breviflorus Sendtn. f. indutus Hassl. = Vassobia Acnistus virgatus Griseb. = Nicotiana glauca Graham breviflora (Sendtn.) Hunz. Referencias: Hunziker, A. T., 1982b. Referencias: Hunziker, A. T., 1984d. Alona microphylla Miers = Phrodus microphyllus Acnistus breviflorus Sendtn. var. glabratus Sendtn. (Miers) Miers = Vassobia breviflora (Sendtn.) Hunz. Referencias: Hunziker, A. T., 2001. Acnistus cestroides (Schltdl.) Miers = Lycium cestroides Schltdl. Athenaea Sendtn., nom. cons. Referencias: Bernardello, L. M., 1986; Cabrera, A. L., 1983d. Número de especies: 1 Acnistus galanderi Dammer = Vassobia breviflora Athenaea picta (Mart.) Sendtn. (Sendtn.) Hunz. Sin.: Witheringia picta Mart. Referencias: Hunziker, A. T., 1984d. Referencias: Barboza, G. E. & Hunziker, A. T., 1989; Smith, L. B. & Downs, R. J., 1966. Acnistus glabratus (Sendtn.) Dammer = Vassobia Arbusto. Nativa. 300–400 m. Países: BRA(PAR, SCA). breviflora (Sendtn.) Hunz. Ejemplares de referencia: BRA[Hatschbach, G. 6444 Referencias: Hunziker, A. T., 1984d. (CORD, MBM)]. Acnistus hauthalii Dammer = Vassobia breviflora Atropa arborescens L. = Acnistus arborescens (L.) (Sendtn.) Hunz. Schltdl. Referencias: Hunziker, A. T., 1984d. Referencias: Hunziker, A. T., 1982b. Acnistus lorentzii Dammer = Eriolarynx lorentzii Atropa hirtella Spreng. = Solanum hirtellum (Spreng.) (Dammer) Hunz. Hassl. Referencias: Hunziker, A. T., 2001. Referencias: Nee, M., 1999. Acnistus lycioides Dammer = Vassobia breviflora Atropa origanifolia (Lam.) Desf. = Salpichroa (Sendtn.) Hunz. origanifolia (Lam.) Baill. Referencias: Hunziker, A. T., 1984d. Referencias: Barboza, G. E. & Hunziker, A. T., 1998c. Acnistus mollis Dammer = Vassobia breviflora (Sendtn.) Atropa physalodes L. = Nicandra physalodes (L.) Hunz. Gaertn. Referencias: Hunziker, A. T., 1984d. Atropa rhomboidea Hook. = Salpichroa origanifolia Acnistus parviflorus Griseb. = Vassobia breviflora (Lam.) Baill. (Sendtn.) Hunz. Referencias: Barboza, G. E. & Hunziker, A. T., 1998c. Referencias: Hunziker, A. T., 1984d. Atropa spinosa Meyen = Dunalia spinosa (Meyen) Acnistus parviflorus Griseb. var. arboreus (Griseb.) Dammer Griseb. = Vassobia breviflora (Sendtn.) Hunz. Referencias: Hunziker, A. T., 1960. Referencias: Hunziker, A. T., 1984d. Acnistus schunckii Dammer = Vassobia breviflora Aureliana Sendtn. (Sendtn.) Hunz. Número de especies: 3 Referencias: Hunziker, A. T., 1982b. Aureliana fasciculata (Vell.) Sendtn. var. fasciculata Acnistus sellowii Dammer = Vassobia breviflora Sin.: Aureliana lucida (Moric.) Sendtn., Capsicum (Sendtn.) Hunz. fasciculatum (Vell.) Kuntze, Capsicum lucidum Referencias: Hunziker, A. T., 1984d. (Moric.) Kuntze, Solanum fasciculatum Vell., Solanum lucidum Moric. Acnistus spinescens (Sendtn.) Dammer = Vassobia Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. breviflora (Sendtn.) Hunz. Arbusto o árbol. Nativa. 0–1300 m. Referencias: Hunziker, A. T., 1984d. Países: BRA(PAR, RGS, SCA); PRY(APA, CAA, SPE). Ejemplares de referencia: BRA[Reitz, P. R. 1897 (CORD, Acnistus spinosus Dammer = Vassobia breviflora HBR)]; PRY[Ortiz, M. 1257 (FCQ)]. (Sendtn.) Hunz. Referencias: Hunziker, A. T., 1984d. 2964 - Solanaceae Dicotyledoneae Aureliana fasciculata (Vell.) Sendtn. var. longifolia Bassovia pyraster Dunal = Vassobia breviflora (Sendtn.) (Sendtn.) Hunz. & Barboza Hunz. Sin.: Aureliana glomuliflora Sendtn. var. longifolium Sendtn. Referencias: Hunziker, A. T., 1984d. Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Arbusto. Nativa. 300–1100 m. Bassovia pyraster Dunal var. glabriusculum Dunal Países: BRA(PAR). = Vassobia breviflora (Sendtn.) Hunz. Ejemplares de referencia: BRA[Hatschbach, G. 31760 Referencias: Hunziker, A. T., 1984d. (CORD, MBM)]. Bassovia spina-alba (Dunal) Griseb. = Vassobia Aureliana fasciculata (Vell.) Sendtn. var. tomentella breviflora (Sendtn.) Hunz. (Sendtn.) Barboza & Hunz. Referencias: Hunziker, A. T., 1984d. Sin.: Aureliana lucida (Moric.) Sendtn. var. tomentellum Sendtn., Bassovia crassiflora Dunal, Bassovia lucida Bassovia tomentosa (Sendtn.) Dunal = Aureliana (Moric.) Sendtn. var. pilosulum Dunal, Capsicum tomentosa Sendtn. crassiflorum (Dunal) Kuntze Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Arbusto o arbolito. Nativa. 0–1000 m. Bassovia wettsteiniana Witasek = Aureliana Países: ARG(MIS); BRA(PAR, RGS, SCA); PRY(APA, CAU, CAA, GUA, PAI). wettsteiniana (Witasek) Hunz. & Barboza Ejemplares de referencia: ARG[Tressens, S. G. 6462 (SI)]; Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. BRA[Smith, L. B. 11693 (CORD)]; PRY[Rojas, T. 7910 (AS, CORD)]. Benthamiella Speg. Aureliana glomuliflora Sendtn. var. longifolium Sendtn. Número de especies: 12 endémicas = Aureliana fasciculata (Vell.) Sendtn. var. Benthamiella abietina Skottsb. = Benthamiella longifolia (Sendtn.) Hunz. & Barboza patagonica Speg. Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Referencias: Arroyo-Leuenberger, S. C., 2000. Aureliana lucida (Moric.) Sendtn. = Aureliana Benthamiella acutifolia Speg. = Benthamiella longifolia fasciculata (Vell.) Sendtn. var. fasciculata Speg. Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Referencias: Arroyo-Leuenberger, S. C., 2000. Aureliana lucida (Moric.) Sendtn. var. tomentellum Benthamiella aurea Skottsb. = Benthamiella patagonica Sendtn. = Aureliana fasciculata (Vell.) Sendtn. var. Speg. tomentella (Sendtn.) Barboza & Hunz. Referencias: Arroyo-Leuenberger, S. C., 2000. Referencias: Hunziker, A. T. & Barboza, G. E., 1991[1990]. Benthamiella azorella (Skottsb.) A.Soriano Aureliana tomentosa Sendtn. Sin.: Saccardophyton azorella Skottsb. Sin.: Bassovia tomentosa (Sendtn.) Dunal, Capsicum Referencias: Arroyo, S. C., 1980, 1999a; tomentosum (Sendtn.) Kuntze Arroyo-Leuenberger, S. C., 2000; Cosa de Gastiazoro,
Recommended publications
  • Weedsoc.Org.Au
    THE WEED SOCIETY OF NEW SOUTH WALES Inc. Website: www.nswweedsoc.org.au Seminar Papers WEEDS – WOE to GO IV Wednesday 6 September 2006 Metcalfe Auditorium State Library of NSW Macquarie Street , SYDNEY Sponsors Collated / Edited by Copies of this publication are available from: Dr Stephen Johnson THE WEED SOCIETY & Bob Trounce OF NEW SOUTH WALES Inc. PO Box 438 WAHROONGA NSW 2076 THE WEED SOCIETY OF NEW SOUTH WALES Inc. ACKNOWLEDGMENTS Seminar Organising Committee Lawrie Greenup (chair) Mike Barrett Bertie Hennecke Luc Streit Coordinator power point presentations Erica McKay Welcome to speakers and delegates Warwick Felton (President) Summary of the day’s presentations Mike Barrett Collation and preparation of proceedings Stephen Johnson Bob Trounce The committee thanks all who took part and attended the seminar and particularly the speakers for their presentations and supply of written documents for these proceedings. THE WEED SOCIETY OF NEW SOUTH WALES Inc. SEMINAR SERIES: WEEDS WOE TO GO IV “Poisonous and Allergenic Plants Where are they?” Date: Wednesday 6th September 2006 Location: The Metcalfe Auditorium The State Library of NSW Macquarie Street Sydney Time Topic Speaker 9.00 – 9.30 am REGISTRATION & MORNING TEA 9.30 – 9.40 am Welcome Warwick Felton 9.40 – 10.30 am Weeds that make you sick Rachel McFadyen 10.30 – 11.20 am Poisonous, prickly, parasitic, pushy? John Virtue Prioritising weeds for coordinated control programs” 11.20 – 1130 am break 11.30 – 11.50 am Parietaria or Asthma Weed Sue Stevens Education & incentive project
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Nematode Management for Bedding Plants1 William T
    ENY-052 Nematode Management for Bedding Plants1 William T. Crow2 Florida is the “land of flowers.” Surely, one of the things that Florida is known for is the beauty of its vegetation. Due to the tropical and subtropical environment, color can abound in Florida landscapes year-round. Unfortunately, plants are not the only organisms that enjoy the mild climate. Due to warm temperatures, sandy soil, and humidity, Florida has more than its fair share of pests and pathogens that attack bedding plants. Plant-parasitic nematodes (Figure 1) can be among the most damaging and hard-to-control of these organisms. What are nematodes? Nematodes are unsegmented roundworms, different from earthworms and other familiar worms that are segmented (annelids) or in some cases flattened and slimy (flatworms). Many kinds of nematodes may be found in the soil of any landscape. Most are beneficial, feeding on bacteria, fungi, or other microscopic organisms, and some may be used as biological control organisms to help manage important insect pests. Plant-parasitic nematodes are nematodes that Figure 1. Diagram of a generic plant-parasitic nematode. feed on live plants (Figure 1). Credits: R. P. Esser, Florida Department of Agriculture and Consumer Services, Division of Plant Industry; used with permission. Plant-parasitic nematodes are very small and most can only be seen using a microscope (Figure 2). All plant-parasitic nematodes have a stylet or mouth-spear that is similar in structure and function to a hypodermic needle (Figure 3). 1. This document is ENY-052, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension.
    [Show full text]
  • Green Cestrum
    OCTOBER 2008 PRIMEFACT 718 REPLACES AGFACT P7.6.44 Green cestrum Neil Griffiths Impact District Agronomist, NSW DPI, Tocal, Paterson Green cestrum is a vigorous plant that can out- compete other vegetation. Green cestrum is toxic to Dr Chris Bourke animals including cattle, sheep, horse, pigs, poultry Principal Research Scientist (Poisonous Plants), and humans. NSW DPI, Orange Agricultural Institute Habitat Green cestrum is normally found along watercourses and in non-crop areas where it usually grows in small to medium-sized thickets. Introduction Distribution Green cestrum (Cestrum parqui) is a large poisonous shrub belonging to the Solanaceae family. In NSW, green cestrum is found in the Hunter Valley, The plant is also known as green poison berry or the outer metropolitan areas of Sydney, the North Coast and the north-west, central west and south- Chilean cestrum. west of the State. Green cestrum was originally introduced into Australia from South America as an ornamental shrub for Description gardens. Since that time, it has become naturalised in Green cestrum is a medium-sized perennial areas of south-eastern Queensland, eastern New South shrub growing 2–3 m (Figure 2). It usually has many Wales (NSW) and parts of Victoria and South Australia. light-green, brittle stems. Figure 1. Green cestrum is a Class 3 noxious weed in NSW. Photo: G. Wisemantel. Leaves Fruit The shiny-green leaves are 20–30 mm wide and Clusters of shiny, black, egg-shaped berries 80–100 mm long. They have smooth edges, are 7–10 mm long are produced during summer and pointed at each end and are arranged alternately autumn (Figure 4).
    [Show full text]
  • Antibacterial and Antifungal Activities of Cestrum Parqui Saponins: Possible Interaction with Membrane Sterols
    International Research Journal of Plant Science (ISSN: 2141-5447) Vol. 3(1) pp. 001-007, January, 2012 Available online http://www.interesjournals.org/IRJPS Copyright © 2012 International Research Journals Full length Research Paper Antibacterial and antifungal activities of Cestrum parqui saponins: possible interaction with membrane sterols Dorsaf Ben Ahmed 1, Ikbal Chaieb 4, Karima Belhadj Salah 2, Habib Boukamcha 3, Hichem Ben Jannet 3, Zine Mighri 3, and Mejda Daami-Remadi 4* 1Institut Supérieur Agronomique de Chott-Mariem, 4042 Chott-Mariem, Université de Sousse, Tunisia 2Laboratoire des Maladies Transmissibles et des Substances Biologiquement Actives, Faculté de Pharmacie de Monastir, 5000, Université de Monastir, Tunisia 3Laboratoire des Substances Naturelles et de Synthèse Organique, Faculté des Sciences de Monastir, 5000, Université de Monastir, Tunisia 4Centre Régional des Recherches en Horticulture et Agriculture Biologique, 4042 Chott-Mariem, Université de Sousse, Tunisia Accepted 10 November, 2011 Cestrum parqui L´Hér. (Solanaceae) is used as ornamental plant in Tunisia. This plant is rich in saponin content which was largely described as a fungicidal compound synthesized by plants for defence purposes. The aim of the present work is to assess the activity of the crude saponic extract (CSE) on several bacterial and fungal agents and to study the interaction between saponin and membrane sterols in relation with their eventual inhibitory activities. Two Gram-positive (Pseudomonas aeruginosa and Escherichia coli) and two Gram-negative ( Staphylococcus aureus and Enterococcus faecalis ) bacteria were tested. No bacterial species was found to be sensitive to C. parqui saponins even with the highest CSE concentration used (100 mg/ml). The antifungal activity was confirmed against two plant pathogens ( Fusarium solani and Botrytis cinerea ) and one antagonistic agent (Trichoderma viride ).
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • An Introduction to Pepino (Solanum Muricatum Aiton)
    International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-1, Issue-2, July -Aug- 2016] ISSN: 2456-1878 An introduction to Pepino ( Solanum muricatum Aiton): Review S. K. Mahato, S. Gurung, S. Chakravarty, B. Chhetri, T. Khawas Regional Research Station (Hill Zone), Uttar Banga Krishi Viswavidyalaya, Kalimpong, Darjeeling, West Bengal, India Abstract — During the past few decades there has been America, Morocco, Spain, Israel and the highlands of renewed interest in pepino cultivation both in the Andean Kenya, as the pepino is considered a crop with potential for region and in several other countries, as the pepino is diversification of horticultural production (Munoz et al, considered a crop with potential for diversification of 2014). In the United States the fruit is known to have been horticultural production. grown in San Diego before 1889 and in Santa Barbara by It a species of evergreen shrub and vegetative propagated 1897 but now a days, several hundred hectares of the fruit by stem cuttings and esteemed for its edible fruit. Fruits are are grown on a small scale in Hawaii and California. The juicy, scented, mild sweet and colour may be white, cream, plant is grown primarily in Chile, New yellow, maroon, or purplish, sometimes with purple stripes Zealand and Western Australia. In Chile, more than 400 at maturity, whilst the shape may be spherical, conical, hectares are planted in the Longotoma Valley with an heart-shaped or horn-shaped. Apart from its attractive increasing proportion of the harvest being exported. morphological features, the pepino fruit has been attributed Recently, the pepino has been common in markets antioxidant, antidiabetic, anti-inflammatory and in Colombia, Ecuador, Bolivia, Peru and Chile and grown antitumoral activities.
    [Show full text]
  • Pepino (Solanum Muricatum Ait.): a Potential Future Crop for Subtropics
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 4(3): 514–517, 2017 DOI: 10.22271/tpr.201 7.v4.i3 .067 Mini review Pepino (Solanum muricatum Ait.): A potential future crop for subtropics Ashok Kumar*, Tarun Adak and S. Rajan ICAR-Central Institute for Subtropical Horticulture, Rehman Khera, P.O. Kakori, Lucknow-226101, Uttar Pradesh, India *Corresponding Author: [email protected] [Accepted: 26 December 2017] Abstract: Pepino (Solanum muricatum) is an Andean region’s crop, originated from South America. The crop has medicinal values and underutilized for its cultivation. It has a wider adaptability across the different locations of Spain, New Zealand, Turkey, Israel, USA, Japan etc. The crop can be grown under diverse soil and climatic conditions in India also. Its fruits are juicy, mild-sweet, sub-acidic and aromatic berry which are rich in antiglycative, antioxidant, dietary fibres and low calorific energy. Fruit is visually attractive with golden yellow colour with purple stripes. The crop was evaluated for its growth and development at ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow, Uttar Pradesh, India (planted in the month of October, 2014). The results of the study exhibited its adaptation to climatic conditions of subtropics with higher yield and acceptable fruit quality. Keywords: Solanum muricatum - Pepino - Subtropic - Adaptation. [Cite as: Kumar A, Adak T & Rajan S (2017) Pepino (Solanum muricatum Ait.): A potential future crop for subtropics. Tropical Plant Research 4(3): 514–517] INTRODUCTION Introduced crops have a vital role in the progress of mankind; on any region of the world, many most important crops did not originate there but were new crops at the time of their introduction.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Evolutionary Routes to Biochemical Innovation Revealed by Integrative
    RESEARCH ARTICLE Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway Gaurav D Moghe1†, Bryan J Leong1,2, Steven M Hurney1,3, A Daniel Jones1,3, Robert L Last1,2* 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States; 2Department of Plant Biology, Michigan State University, East Lansing, United States; 3Department of Chemistry, Michigan State University, East Lansing, United States Abstract The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome- localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of *For correspondence: [email protected] innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the † Present address: Section of emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non- Plant Biology, School of model plant species that remain underexplored. Integrative Plant Sciences, DOI: https://doi.org/10.7554/eLife.28468.001 Cornell University, Ithaca, United States Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Solanum Muricatum) Fruit Grown in Turkey
    WFL Publisher Science and Technology Meri-Rastilantie 3 B, FI-00980 Journal of Food, Agriculture & Environment Vol.8 (2): 168-171. 2010 www.world-food.net Helsinki, Finland e-mail: [email protected] Physical and chemical characteristics of the ripe pepino (Solanum muricatum) fruit grown in Turkey Osman Kola Department of Food Engineering, Faculty of Engineering, Sakarya University, 54040-Sakarya, Turkey. e-mail: [email protected] Received 20 August 2009, accepted 2 December 2009. Abstract The pepino (Solanum muricatum Aiton, Solanaceae) is a little-known crop from the tropical and subtropical regions esteemed for its edible fruits, which are aromatic, juicy, scented, mild sweet, and may have great variation in size, shape and colour depending on the cultivar. Organic acids, sugar fractions, total phenolics and some quality characteristics (titratable acidity, pH, soluble solids, colour, etc.) of pepino fruits (cultivar Miski) obtained from Akyazı, Sakarya, Turkey, were determined. High-performance liquid chromatographic methods were used to identify and quantify non-volatile organic acids and sugars. Pepino fruits (cv. Miski) were egg-shaped, watery, of 210-370 g/fruit weight, 6-12.5 cm in diameter, 7-14.5 cm long, hollow in the middle with several small seeds attached, and with 82-89% edible part. The juice yield (%) of pepino varied from 60.0 to 68.0. Ripe pepino fruits had the titratable acidity (%) ranging from 0.090 to 0.124, Brix (total soluble solids, SSC) from 4.91 to 5.40, and pH values from 4.72 to 5.22. β-carotene (µg/g DW) content was ranging from 57 to 68 in ripe pepino fruit.
    [Show full text]
  • Toxicity of the Macerated of White and Purple Jurubeba Flowers About Bees Apismelliferas in Sertao Paraibano - Brazil
    Toxicity of the macerated of white and purple jurubeba flowers about bees Apismelliferas in sertao paraibano - Brazil 1 2 2 Allan Martins Ferreira Aline Carla de Medeiros , Jussara Silva Dantas ,Rosy 4 3 1 Carina de Araujo Ventura Andre Japiassu , Edmara da Nóbrega Xavier Martins 2 HOW TO CITE THIS PAPER and Patricio Borges Maracaja 1 M Sc.. pelo PPGSA/CCTA/UFCG – Pombal – PB - BRAZIL ALLAN MARTINS FERREIRA1 [email protected], [email protected]. ALINE CARLA DE MEDEIROS2, 2 D. Sc. Professores PPGSA/CCTA/UFCG – Pombal – PB - BRAZIL JUSSARA SILVA DANTAS2,ROSY [email protected], [email protected], [email protected] 4 3 CARINA DE ARAUJO VENTURA CCTA/UFCG– Pombal – PB - BRAZIL E-mail: [email protected] 3 4 ANDRE JAPIASSU , EDMARA DA PPGSA/CCTA/UFCG– Pombal – PB - BRAZIL E-mail: [email protected] 1 NÓBREGA XAVIER MARTINS AND ABSTRACT PATRICIO BORGES MARACAJA2 There are secondary components of the nectar or the pollen in some vegetal species, to can V.. 2. N. 1, 27-35. (2019) be toxics or repellentsfor their pollinators. Thus, this work had for objective to study the Toxicity of the macerated of effects from toxicity of differents concentrationsof macerated flowers of white and purple jurubeba purpleJurubebaandwhite Jurubeba, as feeding of Africanized bees in a controlled environment.Therefore, wererealizedbioassays at the Laboratory of Entomology of the flowers about bees Apismelliferas Federal University of Campina Grande, Campus ofPombal.It was used dried and crushed in sertao paraibano - Brazil flowers of the Chamber and leaddy. The powder of the flowers was weighed in three different Received: Jun 12, 2019 fractions (0,25%, 0,50% e 1,0%) and added to the candyandwater.
    [Show full text]