Bats: Body Mass Index, Forearm Mass Index, Blood Glucose Levels And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chiroptera: Pteropodidae)
Chapter 6 Phylogenetic Relationships of Harpyionycterine Megabats (Chiroptera: Pteropodidae) NORBERTO P. GIANNINI1,2, FRANCISCA CUNHA ALMEIDA1,3, AND NANCY B. SIMMONS1 ABSTRACT After almost 70 years of stability following publication of Andersen’s (1912) monograph on the group, the systematics of megachiropteran bats (Chiroptera: Pteropodidae) was thrown into flux with the advent of molecular phylogenetics in the 1980s—a state where it has remained ever since. One particularly problematic group has been the Austromalayan Harpyionycterinae, currently thought to include Dobsonia and Harpyionycteris, and probably also Aproteles.Inthis contribution we revisit the systematics of harpyionycterines. We examine historical hypotheses of relationships including the suggestion by O. Thomas (1896) that the rousettine Boneia bidens may be related to Harpyionycteris, and report the results of a series of phylogenetic analyses based on new as well as previously published sequence data from the genes RAG1, RAG2, vWF, c-mos, cytb, 12S, tVal, 16S,andND2. Despite a striking lack of morphological synapomorphies, results of our combined analyses indicate that Boneia groups with Aproteles, Dobsonia, and Harpyionycteris in a well-supported, expanded Harpyionycterinae. While monophyly of this group is well supported, topological changes within this clade across analyses of different data partitions indicate conflicting phylogenetic signals in the mitochondrial partition. The position of the harpyionycterine clade within the megachiropteran tree remains somewhat uncertain. Nevertheless, biogeographic patterns (vicariance-dispersal events) within Harpyionycterinae appear clear and can be directly linked to major biogeographic boundaries of the Austromalayan region. The new phylogeny of Harpionycterinae also provides a new framework for interpreting aspects of dental evolution in pteropodids (e.g., reduction in the incisor dentition) and allows prediction of roosting habits for Harpyionycteris, whose habits are unknown. -
2020 Special Issue
Journal Home page : www.jeb.co.in « E-mail : [email protected] Original Research Journal of Environmental Biology TM p-ISSN: 0254-8704 e-ISSN: 2394-0379 JEB CODEN: JEBIDP DOI : http://doi.org/10.22438/jeb/4(SI)/MS_1904 Plagiarism Detector Grammarly New records and present status of bat fauna in Mizoram, North-Eastern India C. Vanlalnghaka Department of Zoology, Govt. Serchhip College, Mizoram–796 181, India *Corresponding Author Email : [email protected] Paper received: 08.12.2019 Revised received: 24.06.2020 Accepted: 10.07.2020 Abstract Aim: The present study aimed to investigate the diversity of bat fauna in Mizoram and prepare a checklist for future references. This study also investigated threats and suggested recommendations for implementing conservation measures for bat fauna in Mizoram. Methodology: The present study was carried out in different parts of Mizoram between January 2012 - October 2019. Bats were trapped by using mist nets and hoop nets. Diagnostic morphological characters of bat were used for species identification. Digital camera and video camera were also used for further identification and documentation of bats. Results: During January 2012 – December 2016, eighteen bat species were identified. Recently, from January 2017 - October 2019 insectivorous bat species, Scotomanes ornatus was first time documented in Serchhip District (23.3 ºN 92.83 ºE), Mizoram. In total nineteen bat species were identified in this study, out of which ten species were first time recorded and nine species were rediscovered from the previous documentation. From the previous and present data, total of thirty-six bat Study the diversity of bat fauna and prepared checklist in species were recorded in Mizoram- nine Mizoram. -
The Australasian Bat Society Newsletter, Number 31, Nov 2008
The Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter Number 39 November 2012 ABS Website: http://abs.ausbats.org.au ABS Discussion list - email: [email protected] ISSN 1448-5877 © Copyright The Australasian Bat Society, Inc. (2012) The Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter, Number 39, November 2012 – Instructions for Contributors – The Australasian Bat Society Newsletter will accept contributions under one of the following two sections: Research Papers, and all other articles or notes. There are two deadlines each year: 10th March for the April issue, and 10th October for the November issue. The Editor reserves the right to hold over contributions for subsequent issues of the Newsletter, and meeting the deadline is not a guarantee of immediate publication. Opinions expressed in contributions to the Newsletter are the responsibility of the author, and do not necessarily reflect the views of the Australasian Bat Society, its Executive or members. For consistency, the following guidelines should be followed: Emailed electronic copy of manuscripts or articles, sent as an attachment, is the preferred method of submission. Faxed and hard copy manuscripts will be accepted but reluctantly! Please send all submissions to the Newsletter Editor at the email or postal address below. Electronic copy should be in 11 point Arial font, left and right justified with 16 mm left and right margins. Please use Microsoft Word; any version is acceptable. Manuscripts should be submitted in clear, concise English and free from typographical and spelling errors. Please leave two spaces after each sentence. -
Final Report on the Project
BP Conservation Programme (CLP) 2005 PROJECT NO. 101405 - BRONZE AWARD WINNER ECOLOGY, DISTRIBUTION, STATUS AND PROTECTION OF THREE CONGOLESE FRUIT BATS FINAL REPORT Patrick KIPALU Team Leader Observatoire Congolais pour la Protection de l’Environnement OCPE – ong Kinshasa – Democratic Republic of the Congo E-mail: [email protected] APRIL 2009 1 Table of Content Acknowledgements…………………………………………………………………. p3 I. Project Summary……………………………………………………………….. p4 II. Introduction…………………………………………………………………… p4-p7 III. Materials and Methods ……………………………………………………….. p7-p10 IV. Results per Study Site…………………………………………………………. p10-p15 1. Pointe-Noire ………………………………………………………….. p10-p12 2. Mayumbe Forest /Luki Reserve……………………………………….. p12-p13 3. Zongo Forest…………………………………………………………... p14 4. Mbanza-Ngungu ………………………………………………………. P15 V. General Results ………………………………………………………………p15-p16 VI. Discussions……………………………………………………………………p17-18 VII. Conclusion and Recommendations……………………………………….p 18-p19 VIII. Bibliography………………………………………………………………p20-p21 Acknowledgements 2 The OCPE (Observatoire Congolais pour la Protection de l’Environnement) project team would like to start by expressing our gratefulness and saying thank you to the BP Conservation Program, which has funded the execution of this project. The OCPE also thanks the Van Tienhoven Foundation which provided a further financial support. Without these organisations, execution of the project would not have been possible. We would like to thank specially the BPCP “dream team”: Marianne D. Carter, Robyn Dalzen and our regretted Kate Stoke for their time, advices, expertise and care, which helped us to complete this work, Our special gratitude goes to Dr. Wim Bergmans, who was the hero behind the scene from the conception to the execution of the research work. Without his expertise, advices and network it would had been difficult for the project team to produce any result from this project. -
Annex I: Mammal & Bird Species of the NNT Area
Annex H: Forest & VegetationEAMP Annexes Types Annex I: Mammal & Bird Species of the NNT Area his annex lists all species of mammals and birds that have Francis, C.M., A. Guillén and M. F. Robinson 1999b. Order Chiri- been found either certainly or provisionally, on the Nakai optera: bats. Pp. 225-235 in Duckworth et al. (q.v.). Plateau and in the NNT NBCA. Many more species are T Ounekham, K. and S. Inthapatha, 2003. Important Bird Areas in Lao likely to occur, but there is insufficient local ecological informa- PDR. Vientiane: DoF/BirdLife International/WCS. tion available for many of those recorded in adjacent parts of Lao PDR to predict whether or not they would be likely to occur on the Robichaud, W. and Stuart, B. L. 1999. Summary of Saola, herpeto- plateau and/or in the NBCA. logical and wildlife trade studies in Nakai--Nam Theun NBCA and the proposed Nam Theun Extension. Unpublished WCS report to IUCN. List of Species (Code R) Robinson, M. F., Jenkins, P. D., Francis, C. M. and Fulford, A. The list of species is based on the following references, assigned a J. C. 2003. A new species of the Hipposideros pra�i group (Chiroptera, single-le�er code for use in the table indicating presence in Nakai- Hipposideridae) from Lao PDR and Vietnam. Acta chiropodologica 5: -Nam Theun NBCA (NNT) or the Nakai Plateau (NP). One source 31-48. (Code F) only is cited for each site; provisional identifications are bracketed Thewlis, R. M., Timmins, R. J., Evans, T. D. and Duckworth, J. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
A Checklist of the Mammals of South-East Asia
A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east -
African Bat Conservation News Template
Volume 33 African Bat Conservation News November 2013 ISSN 1812-1268 © ECJ Seamark, 2009 (AfricanBats) © ECJ Seamark, 2007 (AfricanBats) Above: A Egyptian Fruit Bat (Rousettus aegyptiacus) caught in the Pufuri area, Kruger National Park, South Africa. Inside this issue: Recent Literature 2 Conferences 2 Zoological Society of Southern Africa Conference 2 16th International Bat Research Conference 5 Published Books / Reports 16 Published Papers 16 Notice Board 26 Download and subscribe to African Bat Conservation News published by AfricanBats at: www.africanbats.org The views and opinions expressed in articles are no necessarily those of the editor or publisher. Articles and news items appearing in African Bat Conservation News may be reprinted, provided the author’s and newsletter reference are given. African Bat Conservation News November 2013 vol. 33 2 ISSN 1812-1268 Recent Literature Conference Zoological Society of Southern Africa 2013 Below are abstracts that are specifically related to African bat species. Papers The importance of ecology and physiology in a changing world: Wahlberg Epauletted Fruit Bat (Epomophorus wahlbergi) as an example Colleen T. Downs - School of Life Sciences, University of KwaZulu-Natal, Globally the biggest threats to mammal and bird populations in the short-term are human development, population growth, urbanisation, alien invasions and land transformation resulting in habitat loss for species. In addition climate change is another threat in the long- term. However, to assess how these threats impact on a species and how they may survive both ecological and physiological studies are required. The importance of interdisciplinary studies is highlighted using the example of Wahlberg’s epauletted fruit bat Epomophorus wahlbergi. -
Investigating the Role of Bats in Emerging Zoonoses
12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. -
Bats: Important Reservoir Hosts of Emerging Viruses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Other Publications in Zoonotics and Wildlife Disease Wildlife Disease and Zoonotics 2006 Bats: Important Reservoir Hosts of Emerging Viruses Charles H. Calisher Colorado State University James E. Childs Yale University School of Medicine, [email protected] Hume E. Field Department of Primary Industries and Fisheries, Brisbane, Queensland Tony Schountz University of Northern Colorado Kathryn V. Holmes University of Colorado Health Sciences Center Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub Part of the Veterinary Infectious Diseases Commons Calisher, Charles H.; Childs, James E.; Field, Hume E.; Schountz, Tony; and Holmes, Kathryn V., "Bats: Important Reservoir Hosts of Emerging Viruses" (2006). Other Publications in Zoonotics and Wildlife Disease. 60. https://digitalcommons.unl.edu/zoonoticspub/60 This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLINICAL MICROBIOLOGY REVIEWS, July 2006, p. 531–545 Vol. 19, No. 3 0893-8512/06/$08.00ϩ0 doi:10.1128/CMR.00017-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Bats: Important Reservoir Hosts of Emerging Viruses Charles H. Calisher,1* James E. Childs,2 Hume E. Field,3 Kathryn V. Holmes,4 -
African Chiroptera Report 2016 903
902 ISSN 1990-6471 Appendix 1: Current Taxonomy The list below gives a taxonomical overview of the taxa covered in this report. The order in which these taxa are presented is alphabetically sorted on the hierarchical categories from high (order) to low (subspecies). The "Taxis_id" field contains the number used for the taxon in the the "African Chiroptera Database", and is included for internal reference only. Category, Name and Author Order CHIROPTERA Blumenbach, 1779 † Family AEGYPTONYCTERIDAE Simmons, Seiffert and Gunnell, 2016 † Genus Aegyptonycteris Simmons, Seiffert and Gunnell, 2016 † Species Aegyptonycteris knightae Simmons, Seiffert and Gunnell, 2016 Suborder PTEROPODIFORMI Van Cakenberghe, Kearney and Seamark, 2007 Infraorder PTEROPODIFORMACEI Van Cakenberghe, Kearney and Seamark, 2007 Superfamily PTEROPODOIDEA Gray, 1821 Family PTEROPODIDAE Gray, 1821 Subfamily Eidolinae Almeida, Giannini and Simmons, 2016 Genus Eidolon Rafinesque, 1815 Species Eidolon dupreanum (Schegel, 1867) Species Eidolon helvum (Kerr, 1792) Subspecies Eidolon helvum helvum (Kerr, 1792) † Subfamily Propottininae Butler, 1984 † Genus Propotto Simpson, 1967 † Species Propotto leakeyi Simpson, 1967 Subfamily Pteropodinae Gray, 1821 Genus Pteropus Erxleben, 1777 Species Pteropus aldabrensis True, 1893 Species Pteropus livingstonii Gray, 1866 Species Pteropus niger (Kerr, 1792) Species Pteropus rodricensis Dobson, 1878 Species Pteropus rufus E. Geoffroy St.-Hilaire, 1803 Species Pteropus seychellensis A. Milne-Edwards, 1877 Species Pteropus subniger (Kerr, 1792) -
Development of an in Vitro Model for Animal Species Susceptibility to SARS-Cov-2
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456916; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 1 Running title: Replication of SARS-CoV-2 2 3 Development of an in vitro model for animal species susceptibility to SARS-CoV-2 4 replication based on expression of ACE2 and TMPRSS2 in avian cells 5 6 Darrell R. Kapczynski1, Ryan Sweeney, David L. Suarez, Erica Spackman Mary Pantin- 7 Jackwood 8 9 10 Exotic and Emerging Avian Disease Research Unit, Southeast Poultry Research Laboratory, U.S. 11 National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station 12 Road, Athens, GA 30605 13 14 15 16 1Address correspondence to Dr. Darrell R. Kapczynski, Southeast Poultry Research 17 Laboratory/ARS/USDA, 934 College Station Road, Athens, Georgia 30605. Phone: 18 706.546.3471; Fax: 706.546.3161; email: [email protected] 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456916; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 2 23 ABSTRACT: The SARS-CoV-2 (SC2) virus has caused a worldwide pandemic because of the 24 virus’s ability to transmit efficiently human-to-human.