Investigating the Role of Bats in Emerging Zoonoses

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Role of Bats in Emerging Zoonoses 12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-107028-4 All rights reserved. FAO encourages the reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy Copyright does not extend to the contributions of employees of the Federal Government. Copyright in contents from partners remains with the individual institutions. © FAO 2011 iii Contents Authors’ details v Foreword vii Acknowledgements ix Preface: Scope of this manual xi CHAPTER 1 Emerging infectious diseases 1 Wildlife and emerging infectious diseases 1 Drivers of emergence 2 Impact of EIDs 4 Bats and EIDs 4 Management strategies 8 CHAPTER 2 Natural history, ecological and socio-economic value of bats 15 Taxonomy and distribution 15 Natural history 16 Ecosystem roles 20 Socio-economic roles 21 CHAPTER 3 Bat population abundance assessment and monitoring 29 Population abundance assessment 30 Survey and monitoring design considerations 38 Application of bat population surveys and monitoring to the study of bat-borne diseases 42 Conclusion 43 CHAPTER 4 Disease surveillance in free-ranging bat populations: challenges and logistical considerations 47 Introduction 47 Sampling biases 49 Capture techniques: safety and efficacy 49 Sampling protocols 53 Transport 58 Diagnostic assays/interpretation 58 iv CHAPTER 5 Significant zoonotic diseases identified in bats 63 Introduction 63 Henipaviruses 64 Lyssaviruses 80 Bat coronaviruses 102 Filoviruses 123 CHAPTER 6 Virus discovery 137 Introduction 137 History of virus discovery in bats 138 Molecular approaches to virus discovery in bats 140 Improvement of virus isolation from bats 143 Concluding remarks 145 CHAPTER 7 The use of telemetry to understand bat movement and ecology 151 Tracking technology 151 Discussion 157 CHAPTER 8 The global context of ensuring the health of people, wildlife, livestock and the environment 163 CHAPTER 9 Safe handling of bats 167 Risks of handling bats 167 Working safely 167 First aid and medical assessment 168 v Authors’ details (in alphabetical order) Brian R. Amman Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America e-mail: [email protected] Janine Barrett Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Brisbane, Australia e-mail: [email protected] Carol de Jong Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Brisbane, Australia e-mail: [email protected] Jonathan H. Epstein EcoHealth Alliance, New York, NY, United States of America e-mail: [email protected] Hume Field Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Brisbane, Australia e-mail: [email protected] Ivan V. Kuzmin Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America e-mail: [email protected] Tammy Mildenstein Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, United States of America [email protected] Scott H. Newman EMPRES Wildlife Health & Ecology Unit, Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome e-mail: [email protected] vi Stuart Nichol Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America e-mail: [email protected] Craig Smith Queensland Centre for Emerging Infectious Diseases, Biosecurity Queensland, Brisbane, Australia e-mail: [email protected] Suxiang Tong Gastroenteritis and Respiratory Laboratory Branch, Division of Viral Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America e-mail: [email protected] Jonathan Towner Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America e-mail: [email protected] Lin-Fa Wang CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia e-mail: [email protected] vii Foreword With over 1,150 bat species worldwide – representing about twenty percent of the biodiversity of all mammalian species – they carry out important ecological and agricultural functions such pollination and dispersion of seeds. And while many tropical plant species depend entirely on bats for the distribution of their seeds, it is true that in the tropics bats can also be carriers of important diseases such as rabies, mokola, duvenhage, hendra or nipah viruses. These are the ones we know of today, but some 40 years ago, all we knew was about rabies. Is there more we should be doing? This manual, “Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests” is an introduction to the complex issues associated with a One Health approach to understanding the biology and ecological importance of bats, and the drivers of zoonotic disease emergence from bats to people. As an introduction, this manual will provide a basis for understanding the need to balance natural resource management, disease surveillance, prevention and control. Dr Juan Lubroth, Chief Veterinary Officer Animal Health Service FAO, Rome ix Acknowledgements The Food and Agriculture Organization of the United Nations (FAO) is grateful to the authors of this manual, who met stringent deadlines to deliver excellent overviews of their respective topics. Thanks also to Andreas Streit, Tony Hutson, Paul Racey and Peter Lina for their chapter reviews and suggested revisions, and Charles Rupprecht from the Poxvirus and Rabies Branch (CDC) for his significant contributions to the Lyssaviruses section of chapter 5. The authors are grateful to Cecilia Murguia, who coordinated chapter editing and layout of the manual, Diana Dennington for assistance with scheduling and financial management, and Jane Shaw for editing and proofreading. FAO would like to thank the donors who provided financial support to make the publication of this manual possible. FAO formally acknowledges the following donors: the Australian Government Department of Agriculture, Fisheries and Forestry; the National Institutes of Health, Allergy and Infectious Disease; the Animal Production and Health Commission for Asia and the Pacific; and the Animal Production and Health Division at FAO. The authors would like to acknowledge all of the fieldworkers, researchers, biologists, medics, ecologists and veterinarians whose hard work contributed to the knowledge base presented in this manual. Special thanks to the staff of the Rabies Program CDC for their scientific expertise, dedicated service and international research collaboration. The bat health and safety section has been developed by the Food and Agriculture Organization, the Australian Government Department of Agriculture, Fisheries and Forestry and the Australian Wildlife Health Network. Information is based upon guidance provided in Australian AUSVETPLANs, developed by government health and agriculture agencies and bat experts in Australia; guidance within Bat Manual chapters; and information provided in the Australian Immunisation Handbook 9th Edition 2008. Lyndel Post, Wildlife
Recommended publications
  • Morphometrical Variations of Malaysian Hipposideros Species
    Malaysian Journal of Mathematical Sciences 6(1): 47-57 (2012) Morphometrical Variations of Malaysian Hipposideros Species Siti Nurlydia Sazali, Charlie J. Laman and M.T. Abdullah Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia E-mail: [email protected] ABSTRACT A study on the morphometrical variations among four Malaysian Hipposideros species was conducted using voucher specimens deposited in Universiti Malaysia Sarawak (UNIMAS) Zoological Museum and the Department of Widlife and National Park (DWNP) Kuala Lumpur. Twenty two individuals from four species of Hipposideros ater , H. bicolor , H. cineraceus and H. dyacorum were morphologically measured, in which a total of 27 linear parameters of body, skull and dentals of each were appropriately recorded. The statistical data were later subjected to discriminant function analysis (DFA) and canonical variate analysis (CVA) using SPSS version 15.0 and unweighted pair-group method average (UPGMA) cluster analysis using Minitab version 14.4. The highest character loadings observed in Function l, Function 2 and Function 3 were the forearm length (FA), the third digit second phalanx length (D3P2L) and the palatal length (PL) with standardised canonical discriminant function coefficient values of 21.910, 5.770 and 5.095, respectively. These three characters were identified as the best diagnostic features for discriminating these closely related species of Hipposideros . Hence, this morphometric approach could be a promising tool as an alternative to the molecular DNA analysis for identification of Chiroptera species. Keywords: Hipposideros , morphometric, discriminant function analysis cluster analysis, species identification. 1. INTRODUCTION Bats belong to the order Chiroptera and can be distinguished from all other mammals by their ability to fly, which is a result of the modification of their forelimbs into wings (Payne et al .
    [Show full text]
  • Living with Wildlife - Flying Foxes Fact Sheet No
    LIVING WITH WILDLIFE - FLYING FOXES FACT SHEET NO. 0063 Living with wildlife - Flying Foxes What are flying foxes? flying foxes use to mark their territory and to attract females during the mating season. Flying foxes, also known as fruit bats, are winged mammals belonging to the sub-order group of megabats. Unlike the smaller insectivorous microbats, the Do flying foxes carry diseases? animal navigates using their eye sight and smell, as opposed to echolocation, Like most wildlife and pets, flying foxes may carry diseases that can affect and feed on nectar, pollen and fruit. Flying foxes forage from over 100 humans. Australian Bat Lyssavirus can be transmitted directly from flying species of native plants and may supplement this diet with introduced plants foxes to humans. The risk of contracting Lyssavirus is extremely low, with found in gardens, orchards and urban areas. transmission only possible through direct contact of saliva from an infected Of the four species of flying foxes native to mainland Australia, three reside animal with a skin penetrating bite or scratch. in the Gladstone Region. These species include the grey-headed flying fox Flying foxes are natural hosts of the Hendra virus, however, there is no (Pteropus poliocephalus), black flying fox (Pteropus alecto) and little red evidence that the virus can be transmitted directly to humans. It is believed flying fox (Pteropus scapulatus). that the virus is transmitted from flying foxes to horses through exposure to All of these species are protected under the Nature Conservation Act urine or birthing fluids. Vaccination is the most effective way of reducing the 1992 and the grey-headed flying fox is also listed as ‘vulnerable’ under the risk of the virus infecting horses.
    [Show full text]
  • Cynopterus Minutus, Minute Fruit Bat
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2019: T136423A21985433 Scope: Global Language: English Cynopterus minutus, Minute Fruit Bat Assessment by: Ruedas, L. & Suyanto, A. View on www.iucnredlist.org Citation: Ruedas, L. & Suyanto, A. 2019. Cynopterus minutus. The IUCN Red List of Threatened Species 2019: e.T136423A21985433. https://dx.doi.org/10.2305/IUCN.UK.2019- 3.RLTS.T136423A21985433.en Copyright: © 2019 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Chiroptera Pteropodidae Taxon Name: Cynopterus minutus Miller, 1906 Common Name(s): • English: Minute Fruit Bat Taxonomic Notes: This may be a species complex.
    [Show full text]
  • Daytime Behaviour of the Grey-Headed Flying Fox Pteropus Poliocephalus Temminck (Pteropodidae: Megachiroptera) at an Autumn/Winter Roost
    DAYTIME BEHAVIOUR OF THE GREY-HEADED FLYING FOX PTEROPUS POLIOCEPHALUS TEMMINCK (PTEROPODIDAE: MEGACHIROPTERA) AT AN AUTUMN/WINTER ROOST K.A. CONNELL, U. MUNRO AND F.R. TORPY Connell KA, Munro U and Torpy FR, 2006. Daytime behaviour of the grey-headed flying fox Pteropus poliocephalus Temminck (Pteropodidae: Megachiroptera) at an autumn/winter roost. Australian Mammalogy 28: 7-14. The grey-headed flying fox (Pteropus poliocephalus Temminck) is a threatened large fruit bat endemic to Australia. It roosts in large colonies in rainforest patches, mangroves, open forest, riparian woodland and, as native habitat is reduced, increasingly in vegetation within urban environments. The general biology, ecology and behaviour of this bat remain largely unknown, which makes it difficult to effectively monitor, protect and manage this species. The current study provides baseline information on the daytime behaviour of P. poliocephalus in an autumn/winter roost in urban Sydney, Australia, between April and August 2003. The most common daytime behaviours expressed by the flying foxes were sleeping (most common), grooming, mating/courtship, and wing spreading (least common). Behaviours differed significantly between times of day and seasons (autumn and winter). Active behaviours (i.e., grooming, mating/courtship, wing spreading) occurred mainly in the morning, while sleeping predominated in the afternoon. Mating/courtship and wing spreading were significantly higher in April (reproductive period) than in winter (non-reproductive period). Grooming was the only behaviour that showed no significant variation between sample periods. These results provide important baseline data for future comparative studies on the behaviours of flying foxes from urban and ‘natural’ camps, and the development of management strategies for this species.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • 30 SWARA October – December 2007 Maps of Kitum Cave
    1 Maps of Kitum Cave (1), Mackingeny Cave (2), sections of Kitum Cave (3), and sections of Mackingeny Cave (4). 30 SWARA October – December 2007 2 behaviour 3 Mount Elgon’s ‘elephant caves’ Joyce Lundberg and Donald McFarlane contemplate and map the extraordinary underground attractions of western Kenya’s Mount Elgon National Park. 4 SWARA October – December 2007 31 ne of Kenya’s least vis- that are far too busy eating the herbivore ited parks, the Mount equivalent of chocolate mousse to take Elgon National Park much notice of their potential fate. Oprotects a narrow band The salts are mainly mirabalite, of forest climbing the eastern flank sodium sulphate (commonly called of East Africa’s fifth highest mas- Glauber’s salt), which grows out sif, standing 4,321 metres (14,178 from the walls and can form curved crys- feet) above sea level (see map below). tals resembling pig’s tusks. The crystals are For most visitors, the Park’s principal licked off the wall by buffalos or scraped/ attraction rests in its suite of unique caves, gouged out by bushbuck and elephants. of which the Kitum and the Makingeny Buffalos cannot scrape the rock themselves, Caves are best known. Used by the Elgony so they eat mainly the leftover bits dropped people for centuries, the Elgon caves came by the elephants. The marks left by bush- to wider attention through the writings of buck teeth and elephant tusks are clearly Joseph Thomson (Through Masai Land, identifiable on the cave walls. 1885), and are thought to have been the These marks should not be confused inspiration too for H.
    [Show full text]
  • Fruit Bats Comprised of Only a Few Individuals, Also Previously Located by the Micronesian Megapode Team, Was Confirmed from the Helicopter Search of SA Col
    Population Assessment of the Mariana Fruit Bat (Pteropus mariannus mariannus) on Anatahan, Sarigan, Guguan, Alamagan, Pagan, Agrihan, Asuncion, and Maug; 15 June – 10 July 2010 Administrative Report Pteropus mariannus mariannus at a roost on Pagan, Photograph by E. W. Valdez Ernest W. Valdez U. S. Geological Survey Fort Collins Science Center, Arid Lands Field Station Albuquerque, NM 87131-0001 Administrative Reports are considered to be unpublished and may not be cited or quoted except in follow-up administrative reports to the same Federal agency or unless the agency releases the report to the public. Contents EXECUTIVE SUMMARY ............................................................................................................................... 1 INTRODUCTION ............................................................................................................................................ 3 METHODS AND MATERIALS ....................................................................................................................... 4 RESULTS ...................................................................................................................................................... 7 SARIGAN (15–16 June 2010) .................................................................................................................... 7 GUGUAN (17–18 June 2010) ..................................................................................................................... 7 ALAMAGAN (19–21 June 2010; 10 July 2010)
    [Show full text]
  • Figs1 ML Tree.Pdf
    100 Megaderma lyra Rhinopoma hardwickei 71 100 Rhinolophus creaghi 100 Rhinolophus ferrumequinum 100 Hipposideros armiger Hipposideros commersoni 99 Megaerops ecaudatus 85 Megaerops niphanae 100 Megaerops kusnotoi 100 Cynopterus sphinx 98 Cynopterus horsfieldii 69 Cynopterus brachyotis 94 50 Ptenochirus minor 86 Ptenochirus wetmorei Ptenochirus jagori Dyacopterus spadiceus 99 Sphaerias blanfordi 99 97 Balionycteris maculata 100 Aethalops alecto 99 Aethalops aequalis Thoopterus nigrescens 97 Alionycteris paucidentata 33 99 Haplonycteris fischeri 29 Otopteropus cartilagonodus Latidens salimalii 43 88 Penthetor lucasi Chironax melanocephalus 90 Syconycteris australis 100 Macroglossus minimus 34 Macroglossus sobrinus 92 Boneia bidens 100 Harpyionycteris whiteheadi 69 Harpyionycteris celebensis Aproteles bulmerae 51 Dobsonia minor 100 100 80 Dobsonia inermis Dobsonia praedatrix 99 96 14 Dobsonia viridis Dobsonia peronii 47 Dobsonia pannietensis 56 Dobsonia moluccensis 29 Dobsonia anderseni 100 Scotonycteris zenkeri 100 Casinycteris ophiodon 87 Casinycteris campomaanensis Casinycteris argynnis 99 100 Eonycteris spelaea 100 Eonycteris major Eonycteris robusta 100 100 Rousettus amplexicaudatus 94 Rousettus spinalatus 99 Rousettus leschenaultii 100 Rousettus aegyptiacus 77 Rousettus madagascariensis 87 Rousettus obliviosus Stenonycteris lanosus 100 Megaloglossus woermanni 100 91 Megaloglossus azagnyi 22 Myonycteris angolensis 100 87 Myonycteris torquata 61 Myonycteris brachycephala 33 41 Myonycteris leptodon Myonycteris relicta 68 Plerotes anchietae
    [Show full text]
  • Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam
    viruses Article Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam Satoru Arai 1, Fuka Kikuchi 1,2, Saw Bawm 3 , Nguyễn Trường Sơn 4,5, Kyaw San Lin 6, Vương Tân Tú 4,5, Keita Aoki 1,7, Kimiyuki Tsuchiya 8, Keiko Tanaka-Taya 1, Shigeru Morikawa 9, Kazunori Oishi 1 and Richard Yanagihara 10,* 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] (S.A.); [email protected] (F.K.); [email protected] (K.A.); [email protected] (K.T.-T.); [email protected] (K.O.) 2 Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 3 Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 4 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam; [email protected] (N.T.S.); [email protected] (V.T.T.) 5 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 6 Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar; [email protected] 7 Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan 8 Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan; [email protected] 9 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; [email protected] 10 Pacific Center for Emerging Infectious Diseases Research, John A.
    [Show full text]
  • 2020 Special Issue
    Journal Home page : www.jeb.co.in « E-mail : [email protected] Original Research Journal of Environmental Biology TM p-ISSN: 0254-8704 e-ISSN: 2394-0379 JEB CODEN: JEBIDP DOI : http://doi.org/10.22438/jeb/4(SI)/MS_1904 Plagiarism Detector Grammarly New records and present status of bat fauna in Mizoram, North-Eastern India C. Vanlalnghaka Department of Zoology, Govt. Serchhip College, Mizoram–796 181, India *Corresponding Author Email : [email protected] Paper received: 08.12.2019 Revised received: 24.06.2020 Accepted: 10.07.2020 Abstract Aim: The present study aimed to investigate the diversity of bat fauna in Mizoram and prepare a checklist for future references. This study also investigated threats and suggested recommendations for implementing conservation measures for bat fauna in Mizoram. Methodology: The present study was carried out in different parts of Mizoram between January 2012 - October 2019. Bats were trapped by using mist nets and hoop nets. Diagnostic morphological characters of bat were used for species identification. Digital camera and video camera were also used for further identification and documentation of bats. Results: During January 2012 – December 2016, eighteen bat species were identified. Recently, from January 2017 - October 2019 insectivorous bat species, Scotomanes ornatus was first time documented in Serchhip District (23.3 ºN 92.83 ºE), Mizoram. In total nineteen bat species were identified in this study, out of which ten species were first time recorded and nine species were rediscovered from the previous documentation. From the previous and present data, total of thirty-six bat Study the diversity of bat fauna and prepared checklist in species were recorded in Mizoram- nine Mizoram.
    [Show full text]
  • The Australasian Bat Society Newsletter, Number 31, Nov 2008
    The Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter Number 39 November 2012 ABS Website: http://abs.ausbats.org.au ABS Discussion list - email: [email protected] ISSN 1448-5877 © Copyright The Australasian Bat Society, Inc. (2012) The Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter, Number 39, November 2012 – Instructions for Contributors – The Australasian Bat Society Newsletter will accept contributions under one of the following two sections: Research Papers, and all other articles or notes. There are two deadlines each year: 10th March for the April issue, and 10th October for the November issue. The Editor reserves the right to hold over contributions for subsequent issues of the Newsletter, and meeting the deadline is not a guarantee of immediate publication. Opinions expressed in contributions to the Newsletter are the responsibility of the author, and do not necessarily reflect the views of the Australasian Bat Society, its Executive or members. For consistency, the following guidelines should be followed: Emailed electronic copy of manuscripts or articles, sent as an attachment, is the preferred method of submission. Faxed and hard copy manuscripts will be accepted but reluctantly! Please send all submissions to the Newsletter Editor at the email or postal address below. Electronic copy should be in 11 point Arial font, left and right justified with 16 mm left and right margins. Please use Microsoft Word; any version is acceptable. Manuscripts should be submitted in clear, concise English and free from typographical and spelling errors. Please leave two spaces after each sentence.
    [Show full text]
  • Priority-Setting for Philippine Bats Using Practical Approach to Guide Effective Species Conservation and Policy-Making in the Anthropocene
    Published by Associazione Teriologica Italiana Volume 30 (1): 74–83, 2019 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00172-2019 Research Article Priority-setting for Philippine bats using practical approach to guide effective species conservation and policy-making in the Anthropocene Krizler Cejuela Tanalgo1,2,3,4,∗, Alice Catherine Hughes1,3 1Landscape Ecology Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 2International College, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 3Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 4Department of Biological Sciences, College of Arts and Sciences, University of Southern Mindanao, Kabacan 9407, North Cotabato, the Republic of the Philippines Keywords: Abstract asian tropics endemism National level approaches to the development and implementation of effective conservation policy forest loss and practice are often challenged by limited capacity and resources. Developing relevant and hunting achievable priorities at the national level is a crucial step for effective conservation. The Philip- islands pine archipelago includes over 7000 islands and is one of only two countries considered both a oil palm global biodiversity hotspot and a megadiversity country. Yet, few studies have conducted over- arching synthesis for threats and conservation priorities of any species group. As bats make up a Article history: significant proportion of mammalian diversity in the Philippines and fulfil vital roles to maintain Received: 01/19/2019 ecosystem health and services we focus on assessing the threats and priorities to their conserva- Accepted: 24/06/2019 tion across the Philippines.
    [Show full text]