Bats As Bushmeat: a Global Review S Imon M Ickleburgh,Kerry W Aylen and P Aul R Acey

Total Page:16

File Type:pdf, Size:1020Kb

Bats As Bushmeat: a Global Review S Imon M Ickleburgh,Kerry W Aylen and P Aul R Acey Review Bats as bushmeat: a global review S imon M ickleburgh,Kerry W aylen and P aul R acey Abstract A questionnaire survey and literature review on bats. There is some evidence that hunting and trade is revealed the extent of hunting of bats for bushmeat in having a significant impact on bat populations in the Pacific the Old World tropics. High levels of offtake were reported islands and South-East Asia (Mickleburgh et al., 2002) and throughout Asia, the Pacific islands and some Western also in Madagascar (Jenkins & Racey, 2008) but there is no Indian Ocean islands, where fruit bats of the genus overall view of its potential global impact on bats. Further- Pteropus are eaten extensively. Most hunting in Africa was more, recent reviews of emergent viral diseases in bats have reported in western states and the largest fruit bat Eidolon raised concerns that eating bats as bushmeat may transmit helvum was preferred. Insectivorous bats are also eaten, such diseases (Messenger et al., 2003). particularly Tadarida in Asia. Hunting is both for local The low reproductive rate of bats makes them especially consumption and commercial, sometimes involving cross- vulnerable to harvesting for bushmeat. In several life-history border transactions. The high levels of hunting reported characteristics bats are similar to primates that are severely and the low reproductive rate of bats indicate there are impacted by the bushmeat trade (Bowen-Jones & Pendry, likely to be severe negative effects on bat populations, and 1999). Bats are long-lived and often roost communally, declines of several species are documented. Although there which increases their visibility and susceptibility to hunters. has been only one reported attempt to manage offtake, this Their vulnerability may be further increased by roost indicates that it is possible and apparently successful. Fur- location and fidelity. Roosts, such as caves and trees, are thermore, voluntary controls on hunting have halted de- vulnerable to disturbance and bats return seasonally to roost clines in bat numbers. There have been several initiatives sites, making them predictable targets. Many bat species to reduce hunting pressure and conserve threatened bat also face other threats, such as habitat loss, throughout their species, mainly on islands that, when sustained, have been range, and these threats may interact with hunting to successful. More education projects and community-based increase their vulnerability further. The global status of conservation initiatives should be encouraged together bats is reviewed by Mickleburgh et al. (1992; for Old World with further attempts at sustainable harvesting in situa- fruit bats) and Hutson et al. (2001; for all other bats). tions where disease risk has been evaluated. Over 20% of all mammal species are bats (Simmons, 2005). On some islands bats may be the only native mam- Keywords Bats, bushmeat, commercial hunting, Eidolon, mals and may be keystone species in ecosystems (Cox et al., Pteropus, sustainability, Tadarida. 1992) as pollinators and seed dispersers of plants, many of which are economically important (Fujita & Tuttle, 1991). This paper contains supplementary material that can be The hunting of bats for bushmeat could therefore be found online at http://journals.cambridge.org a significant threat to their populations, and it is of crucial conservation and economic importance to discover the Introduction extent of hunting. We present here the results of a global survey of the use of bats as bushmeat, discuss the potential here is growing concern about the potential impact conservation problems this causes, and make recommen- Tof the bushmeat trade on a range of animal species dations on how these problems could be tackled. (Robinson & Bennett, 2000). Attention has often focused on primates and other large mammals (Bowen-Jones & Methods Pendry, 1999) and to date there has been little information This study was initiated over April–September 2004 using y SIMON MICKLEBURGH* and KERRY WAYLEN Fauna & Flora International, two principal methods. The first approach was a literature Cambridge, UK. review. This included literature accumulated by a Fauna & PAUL RACEY (Corresponding author) School of Biological Sciences, Univer- Flora International review of the bushmeat trade (Bowen- sity of Aberdeen, Aberdeen, AB24 2TZ, UK. E-mail [email protected] Jones et al., 2002) together with online publications and *Current address: The Rufford Maurice Laing Foundation, London, UK. media reports. Most material reviewed was in English; some y Current addresses: Centre for Environmental Policy and Division of Biology, was in Spanish and French. The second approach involved Imperial College London, Silwood Park Campus, Ascot, UK, and Macaulay 1 Institute, Aberdeen, UK. a questionnaire (Appendix ) widely distributed by e-mail Received 5 June 2008. Revision requested 12 August 2008. and advertised in the journal Phelsuma and in African Bat Accepted 12 December 2008. Conservation News. The questionnaire requested information ª 2009 Fauna & Flora International, Oryx, 43(2), 217–234 doi:10.1017/S0030605308000938 Printed in the United Kingdom Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.14, on 28 Sep 2021 at 12:24:16, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605308000938 218 S. Mickleburgh et al. about traditional and current use of bats as bushmeat, the Indonesia Bergmans & Rozendaal (1988) noted . 100 impact on bat populations, the techniques used to hunt bats Pteropus alecto for sale by one trader in a market in and the relative importance of bats in local bushmeat trade. Sulawesi in 1982 and several other species were also Where relevant, the basis of the information provided was regularly traded. Clayton & Milner-Gulland (2000) made also queried: for example, the suggestion that hunting detailed observations of the meats, including bat meat, in adversely affected bat populations was only occasionally markets in north Sulawesi; in the early 1990s a single fruit supported by research. Where necessary, data from ques- bat was worth USD 0.23–1.14, and 25–50 bats per week were tionnaires were clarified and supplemented by further typically sold; this reached 300 in 1997. In each of two enquiries. Anecdotes and other information from respond- markets in Ujung Pandang, Sulawesi, 100–200 flying foxes ents were also noted. were traded daily and c. 8% of bats from Ujang Pandang were exported to supermarkets in Manado City (Heinrichs, 2004 Results ). In Jakarta Pteropus vampyrus were offered by at least two market vendors for USD 10 each, who each sold c. five 1991 Literature review per week (Fujita & Tuttle, ). Bats were also readily available at Manadonese restaurants (Fujita, 1988). How- The literature review revealed 119 references with some ever, on Karakelang, most bats were eaten by the trappers information indicating bat consumption, including 87 and hunting was not commercially driven (Riley, 1998). journal papers, seven media reports, three web articles, Whole roosts could be devastated by harvesting for markets four university theses or other manuscripts, nine govern- in north Sulawesi (Clayton & Milner-Gulland, 2000) and ment reports and 20 NGO reports. Given the volume of five species, including one endemic, were threatened by literature on bushmeat, bat consumption is not a prominent hunting on the islands of Sangihe and Talaud, with topic. Thirty-one apparently comprehensive studies of Acerodon celebensis possibly warranting threatened status bushmeat hunting or trade did not mention bats. Whilst (Riley, 2002). Fruit bats were heavily hunted on Karakelang additional reports may exist, especially in languages other Island (Riley, 1998). Market surveys and colony observa- than English, the references reviewed are likely to give tions indicated that c. 30,000 bats were killed per year in a representative indication of the level of use of bats as southern Sulawesi, and overharvesting seriously threatens bushmeat. Information provided by respondents about the flying fox populations (Heinrichs, 2004). Populations of use of bats in traditional medicine will appear elsewhere. A. celebensis and Pteropus griseus mimus may have been The terms fruit bat and flying fox are used interchangeably decimated and P. alecto populations reduced by 25% for members of the Pteropodidae. (Heinrichs, 2004). In some regions smaller bat species were hunted because flying foxes were no longer present 2004 Questionnaire (Heinrichs, ). The impact of hunting in Indonesia may be exacerbated because hunters leave obstructions in place A total of 109 individuals responded to the request for that are used to catch cave bats, which then preclude re- information, with 90 completing questionnaires (Appendix 2). establishment of some colonies. In Kalimantan c. 4,500 The respondents provided 138 reports on bat consumption Pteropus vampyrus natunae were taken from one location (Table 1) and the geographical distribution of these is given over a month, resulting in severe population decline in Table 2. The methods used to hunt bats are listed in Table 3. (Streubig et al., 2007). The bats were sold in markets for The information below only covers areas where significant USD 0.63–2.20 each. There has been some response to bat consumption has been reported (Table 2). Other areas, problems in this region. Bat Conservation International such as Eurasia, North Africa, the Arabian Peninsula, and Fauna & Flora
Recommended publications
  • A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape As A
    A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape as a Chiropteran Diversity Hotspot in Sumatra Author(s): Joe Chun-Chia Huang, Elly Lestari Jazdzyk, Meyner Nusalawo, Ibnu Maryanto, Maharadatunkamsi, Sigit Wiantoro, and Tigga Kingston Source: Acta Chiropterologica, 16(2):413-449. Published By: Museum and Institute of Zoology, Polish Academy of Sciences DOI: http://dx.doi.org/10.3161/150811014X687369 URL: http://www.bioone.org/doi/full/10.3161/150811014X687369 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Acta Chiropterologica, 16(2): 413–449, 2014 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811014X687369 A recent
    [Show full text]
  • Chiroptera: Pteropodidae)
    Chapter 6 Phylogenetic Relationships of Harpyionycterine Megabats (Chiroptera: Pteropodidae) NORBERTO P. GIANNINI1,2, FRANCISCA CUNHA ALMEIDA1,3, AND NANCY B. SIMMONS1 ABSTRACT After almost 70 years of stability following publication of Andersen’s (1912) monograph on the group, the systematics of megachiropteran bats (Chiroptera: Pteropodidae) was thrown into flux with the advent of molecular phylogenetics in the 1980s—a state where it has remained ever since. One particularly problematic group has been the Austromalayan Harpyionycterinae, currently thought to include Dobsonia and Harpyionycteris, and probably also Aproteles.Inthis contribution we revisit the systematics of harpyionycterines. We examine historical hypotheses of relationships including the suggestion by O. Thomas (1896) that the rousettine Boneia bidens may be related to Harpyionycteris, and report the results of a series of phylogenetic analyses based on new as well as previously published sequence data from the genes RAG1, RAG2, vWF, c-mos, cytb, 12S, tVal, 16S,andND2. Despite a striking lack of morphological synapomorphies, results of our combined analyses indicate that Boneia groups with Aproteles, Dobsonia, and Harpyionycteris in a well-supported, expanded Harpyionycterinae. While monophyly of this group is well supported, topological changes within this clade across analyses of different data partitions indicate conflicting phylogenetic signals in the mitochondrial partition. The position of the harpyionycterine clade within the megachiropteran tree remains somewhat uncertain. Nevertheless, biogeographic patterns (vicariance-dispersal events) within Harpyionycterinae appear clear and can be directly linked to major biogeographic boundaries of the Austromalayan region. The new phylogeny of Harpionycterinae also provides a new framework for interpreting aspects of dental evolution in pteropodids (e.g., reduction in the incisor dentition) and allows prediction of roosting habits for Harpyionycteris, whose habits are unknown.
    [Show full text]
  • Figs1 ML Tree.Pdf
    100 Megaderma lyra Rhinopoma hardwickei 71 100 Rhinolophus creaghi 100 Rhinolophus ferrumequinum 100 Hipposideros armiger Hipposideros commersoni 99 Megaerops ecaudatus 85 Megaerops niphanae 100 Megaerops kusnotoi 100 Cynopterus sphinx 98 Cynopterus horsfieldii 69 Cynopterus brachyotis 94 50 Ptenochirus minor 86 Ptenochirus wetmorei Ptenochirus jagori Dyacopterus spadiceus 99 Sphaerias blanfordi 99 97 Balionycteris maculata 100 Aethalops alecto 99 Aethalops aequalis Thoopterus nigrescens 97 Alionycteris paucidentata 33 99 Haplonycteris fischeri 29 Otopteropus cartilagonodus Latidens salimalii 43 88 Penthetor lucasi Chironax melanocephalus 90 Syconycteris australis 100 Macroglossus minimus 34 Macroglossus sobrinus 92 Boneia bidens 100 Harpyionycteris whiteheadi 69 Harpyionycteris celebensis Aproteles bulmerae 51 Dobsonia minor 100 100 80 Dobsonia inermis Dobsonia praedatrix 99 96 14 Dobsonia viridis Dobsonia peronii 47 Dobsonia pannietensis 56 Dobsonia moluccensis 29 Dobsonia anderseni 100 Scotonycteris zenkeri 100 Casinycteris ophiodon 87 Casinycteris campomaanensis Casinycteris argynnis 99 100 Eonycteris spelaea 100 Eonycteris major Eonycteris robusta 100 100 Rousettus amplexicaudatus 94 Rousettus spinalatus 99 Rousettus leschenaultii 100 Rousettus aegyptiacus 77 Rousettus madagascariensis 87 Rousettus obliviosus Stenonycteris lanosus 100 Megaloglossus woermanni 100 91 Megaloglossus azagnyi 22 Myonycteris angolensis 100 87 Myonycteris torquata 61 Myonycteris brachycephala 33 41 Myonycteris leptodon Myonycteris relicta 68 Plerotes anchietae
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Priority-Setting for Philippine Bats Using Practical Approach to Guide Effective Species Conservation and Policy-Making in the Anthropocene
    Published by Associazione Teriologica Italiana Volume 30 (1): 74–83, 2019 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00172-2019 Research Article Priority-setting for Philippine bats using practical approach to guide effective species conservation and policy-making in the Anthropocene Krizler Cejuela Tanalgo1,2,3,4,∗, Alice Catherine Hughes1,3 1Landscape Ecology Group, Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 2International College, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 3Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, People’s Republic of China 4Department of Biological Sciences, College of Arts and Sciences, University of Southern Mindanao, Kabacan 9407, North Cotabato, the Republic of the Philippines Keywords: Abstract asian tropics endemism National level approaches to the development and implementation of effective conservation policy forest loss and practice are often challenged by limited capacity and resources. Developing relevant and hunting achievable priorities at the national level is a crucial step for effective conservation. The Philip- islands pine archipelago includes over 7000 islands and is one of only two countries considered both a oil palm global biodiversity hotspot and a megadiversity country. Yet, few studies have conducted over- arching synthesis for threats and conservation priorities of any species group. As bats make up a Article history: significant proportion of mammalian diversity in the Philippines and fulfil vital roles to maintain Received: 01/19/2019 ecosystem health and services we focus on assessing the threats and priorities to their conserva- Accepted: 24/06/2019 tion across the Philippines.
    [Show full text]
  • Bat Count 2003
    BAT COUNT 2003 Working to promote the long term, sustainable conservation of globally threatened flying foxes in the Philippines, by developing baseline population information, increasing public awareness, and training students and protected area managers in field monitoring techniques. 1 A Terminal Report Submitted by Tammy Mildenstein1, Apolinario B. Cariño2, and Samuel Stier1 1Fish and Wildlife Biology, University of Montana, USA 2Silliman University and Mt. Talinis – Twin Lakes Federation of People’s Organizations, Diputado Extension, Sibulan, Negros Oriental, Philippines Photo by: Juan Pablo Moreiras 2 EXECUTIVE SUMMARY Large flying foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to deforestation, unregulated hunting, and little conservation commitment from local governments. Despite the fact they are globally endangered and play essential ecological roles in forest regeneration as seed dispersers and pollinators, there have been only a few studies on these bats that provide information useful to their conservation management. Our project aims to promote the conservation of large flying foxes in the Philippines by providing protected area managers with the training and the baseline information necessary to design and implement a long-term management plan for flying foxes. We focused our efforts on the globally endangered Philippine endemics, Acerodon jubatus and Acerodon leucotis, and the bats that commonly roost with them, Pteropus hypomelanus, P. vampyrus lanensis, and P. pumilus which are thought to be declining in the Philippines. Local participation is an integral part of our project. We conducted the first national training workshop on flying fox population counts and conservation at the Subic Bay area.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • A Checklist of the Mammals of South-East Asia
    A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east
    [Show full text]
  • Investigating the Role of Bats in Emerging Zoonoses
    12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • Taxonomy and Natural History of the Southeast Asian Fruit-Bat Genus Dyacopterus
    Journal of Mammalogy, 88(2):302–318, 2007 TAXONOMY AND NATURAL HISTORY OF THE SOUTHEAST ASIAN FRUIT-BAT GENUS DYACOPTERUS KRISTOFER M. HELGEN,* DIETER KOCK,RAI KRISTIE SALVE C. GOMEZ,NINA R. INGLE, AND MARTUA H. SINAGA Division of Mammals, National Museum of Natural History (NHB 390, MRC 108), Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, USA (KMH) Forschungsinstitut Senckenberg, Senckenberganlage 25, Frankfurt, D-60325, Germany (DK) Philippine Eagle Foundation, VAL Learning Village, Ruby Street, Marfori Heights, Davao City, 8000, Philippines (RKSCG) Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA (NRI) Division of Mammals, Field Museum of Natural History, Chicago, IL 60605, USA (NRI) Museum Zoologicum Bogoriense, Jl. Raya Cibinong Km 46, Cibinong 16911, Indonesia (MHS) The pteropodid genus Dyacopterus Andersen, 1912, comprises several medium-sized fruit-bat species endemic to forested areas of Sundaland and the Philippines. Specimens of Dyacopterus are sparsely represented in collections of world museums, which has hindered resolution of species limits within the genus. Based on our studies of most available museum material, we review the infrageneric taxonomy of Dyacopterus using craniometric and other comparisons. In the past, 2 species have been described—D. spadiceus (Thomas, 1890), described from Borneo and later recorded from the Malay Peninsula, and D. brooksi Thomas, 1920, described from Sumatra. These 2 nominal taxa are often recognized as species or conspecific subspecies representing these respective populations. Our examinations instead suggest that both previously described species of Dyacopterus co-occur on the Sunda Shelf—the smaller-skulled D. spadiceus in peninsular Malaysia, Sumatra, and Borneo, and the larger-skulled D.
    [Show full text]
  • Habitat Selection of Endangered and Endemic Large Flying-Foxes in Subic
    Biological Conservation 126 (2005) 93–102 www.elsevier.com/locate/biocon Habitat selection of endangered and endemic large Xying-foxes in Subic Bay, Philippines Tammy L. Mildenstein a,¤, Sam C. Stier a, C.E. Nuevo-Diego b, L. Scott Mills c a c/o US Peace Corps, Patio Madrigal Compound, 2775 Roxas Blvd., Pasay City, Metro Manila, Philippines b 9872 Isarog St. Umali Subdivision, Los Baños, Laguna 4031, Philippines c Wildlife Biology Program, School of Forestry, University of Montana, Missoula, MT 59812-0596, USA Received 6 June 2004 Available online 5 July 2005 Abstract Large Xying-foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to high levels of deforestation and hunting and eVectively little local conservation commitment. The forest at Subic Bay, Philippines, supports a rare, large colony of vulnerable Philippine giant fruit bats (Pteropus vampyrus lanensis) and endangered and endemic golden-crowned Xying-foxes (Acerodon jubatus). These large Xying-foxes are optimal for conservation focus, because in addition to being keystone, Xagship, and umbrella species, the bats are important to Subic Bay’s economy and its indigenous cultures. Habitat selection information stream- lines management’s eVorts to protect and conserve these popular but threatened animals. We used radio telemetry to describe the bats’ nighttime use of habitat on two ecological scales: vegetation and microhabitat. The fruit bats used the entire 14,000 ha study area, including all of Subic Bay Watershed Reserve, as well as neighboring forests just outside the protected area boundaries. Their recorded foraging locations ranged between 0.4 and 12 km from the roost.
    [Show full text]
  • PARASITIC on MEGACHIROPTERAN BATS X
    Pacific Insects Monograph 28: 213-243 20 June 1971 REVIEW OF THE STREBLIDAE (Diptera) PARASITIC ON MEGACHIROPTERAN BATS x By T. C. Maa2 Abstract. Of the 16 streblid species previously recorded as parasites of the Megachiroptera, only 6 are here considered to be correctly so associated. Five of these 6 species are re-assigned to a new genus and only 1 is retained in the genus Brachytarsina (^Nycteribosca). These 2 genera are each divided into 2 subgenera and their host relationships, distributional patterns and evolutionary trends are discussed. Earlier records of the species are critically reviewed and are incorporated with new data which are based on some 650 specimens. The new taxa described are Megastrebla, n. gen. (type N. gigantea Speiser); Aoroura, n. subgen, (type N. nigriceps Jobling); Psilacris, n. subgen, (type N. longiarista Jobling); M. (A) limbooliati, n. sp. (Malaya, Borneo); M. (M.) gigantea kaluzvawae, n. ssp. (Fergusson I.); M. (M) gigantea salomonis, n. ssp. (Solomon Is.); M. (M) parvior papuae, n. ssp. (New Guinea). Streblid batflies are rarely found on the suborder Megachiroptera, composed of the single family Pteropodidae, whose members are generally referred to as fruit bats. Only 16 species have been recorded on these bats. A closer examination of the pub­ lished records clearly indicates that 10 of these 16 species (see Appendix II) should not be considered true parasites of the Megachiroptera; available data support the con­ cept that no streblids normally breed simultaneously on both the Megachiroptera and Microchiroptera, and among the 39 genera of the former suborder, only those which usually roost in partially illuminated caves and rock-crevices serve as normal breeding hosts of Streblidae.
    [Show full text]