List of Taxa for Which MIL Has Images

Total Page:16

File Type:pdf, Size:1020Kb

List of Taxa for Which MIL Has Images LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12. Antidorcas hofmeyri - Kalahari Springbok 13. Antidorcas marsupialis - Cape Springbok 14. Antilope cervicapra - Blackbuck 15. Arabitragus jayakari - Arabian Tahr 16. Beatragus hunteri - Hirola (Hunter’s Hartebeest) 17. Bos bison - American Bison 18. Bos bonasus - Wisent (European Bison) 19. Bos caucasicus - Caucasian Bison 20. Bos frontalis - Gayal 21. Bos gaurus - Gaur 22. Bos grunniens - Domestic Yak 23. Bos indicus - Zebu 24. Bos javanicus - Banteng 25. Bos mutus - Wild Yak 26. Bos sauveli - Kouprey 27. Bos taurus - Taurine Cattle 28. Boselaphus tragocamelus - Nilgai 29. Bubalus arnee - Asian Wild Buffalo 30. Bubalus bubalis - Water Buffalo 31. Bubalus depressicornis - Anoa 32. Bubalus mindorensis - Tamaraw 33. Budorcas bedfordi - Golden Takin 34. Budorcas taxicolor - Mishmi Takin 35. Budorcas tibetana - Sichuan Takin 36. Capra caucasica - Kuban Tur 37. Capra cylindricornis - Daghestan Tur 38. Capra falconeri - Markhor 39. Capra hircus - Domestic Goat 40. Capra ibex - Alpine Ibex 41. Capra nubiana - Nubian Ibex 42. Capra pyrenaica - Iberian (Spanish) Ibex 43. Capra sibirica - Siberian Ibex 44. Capra walie - Walia Ibex 45. Capricornis crispus - Japanese Serow 46. Capricornis maritimus - Indochinese Serow 47. Capricornis sumatraensis - Sumatran Serow 48. Cephalophus dorsalis - Western Bay Duiker 49. Cephalophus harveyi - Harvey’s Duiker 50. Cephalophus hooki - Mt. Kenya Duiker 51. Cephalophus jentinki - Jentink's Duiker 52. Cephalophus natalensis - Natal Red Duiker 53. Cephalophus niger - Black Duiker 54. Cephalophus rufilatus - Red-flanked Duiker 55. Cephalophus silvicultor - Western Yellow-backed Duiker 56. Cephalophus zebra - Banded Duiker 57. Connochaetes albojubatus - Eastern White-bearded Wildebeest 58. Connochaetes gnou - Black Wildebeest 59. Connochaetes johnstoni - Johnston’s Wildebeest 60. Connochaetes mearnsi - Serengeti White-bearded Wildebeest 61. Connochaetes taurinus - Blue Wildebeest 62. Damaliscus jimela - Serengeti Topi 63. Damaliscus lunatus - Western Tsessebe 64. Damaliscus phillipsi - Blesbok 65. Damaliscus pygargus - Bontebok 66. Damaliscus topi - Coastal Topi 67. Dorcatragus megalotis - Beira 68. Eudorcas nasalis - Serengeti Thompson’s Gazelle 69. Eudorcas rufifrons - Red-fronted Gazelle 70. Eudorcas thomsonii - Eastern Thomson's Gazelle 71. Eudorcas tilonura - Eritrean Gazelle 72. Gazella acaciae - Acacia Gazelle 73. Gazella arabica - Arabian Gazelle 74. Gazella bennettii - Deccan Chinkara 75. Gazella christii - Gujarat Chinkara 76. Gazella cuvieri - Cuvier’s Gazelle 77. Gazella dorcas - Dorcas Gazelle 78. Gazella erlangeri - Arabian Coastal Gazelle 79. Gazella gazella - Mountain Gazelle 80. Gazella leptoceros - Slender-horned Gazelle 81. Gazella marica - Sand Gazelle 82. Gazella pelzelni - Pelzeln’s Gazelle 83. Gazella spekei - Speke's Gazelle 84. Gazella subgutturosa - Persian Gazelle (Goitered Gazelle) 85. Gazella yarkandensis - Yarkand Gazelle 86. Hemitragus jemlahicus - Himalayan Tahr 87. Hippotragus equinus - Roan Antelope 88. Hippotragus niger - Southern Sable Antelope 89. Kobus defassa - Defassa Waterbuck 90. Kobus ellipsiprymnus - Ellipsen Waterbuck 91. Kobus kafuensis - Kafue Flats Lechwe 92. Kobus leche - Red Lechwe 93. Kobus megaceros - Nile Lechwe 94. Kobus thomasi - Uganda Kob 95. Kobus vardoni - Puku 96. Litocranius walleri - Southern Gerenuk 97. Madoqua cavendishi- Cavendish's Dik-dik 98. Madoqua damarensis - Damara Dik-dik 99. Madoqua guentheri - Guenther’s Dikdik 100. Madoqua hararensis - Harar Dik-dik 101. Madoqua hindei - Hinde’s Dik-dik 102. Madoqua lawrancei - Lawrance's Dik-dik 103. Madoqua phillipsi - Phillips's Dik-dik 104. Madoqua piacentinii - Silver Dik-dik 105. Nanger dama - Dama Gazelle 106. Nanger granti - Grant's Gazelle 107. Nanger notatus - Bright’s Gazelle 108. Nanger petersii - Peters’s Gazelle 109. Nanger soemmerringi - Soemmerring’s Gazelle 110. Nemorhaedus caudatus - Long-tailed Goral 111. Nemorhaedus goral - Himalayan Brown Goral 112. Nemorhaedus griseus - Chinese Goral 113. Neotragus pygmaeus - Royal Antelope 114. Nesotragus kirchenpaueri - Mountain Suni 115. Nesotragus livingstonianus - Livingstone’s Suni 116. Nilgiritragus hylocrius - Nilgiri Tahr 117. Nyala angasii - Nyala 118. Oreamnos americanus - Mountain Goat 119. Oreotragus aureus - Golden Klipspringer 120. Oreotragus oreotragus - Cape Klipspringer 121. Oreotragus saltatrixoides - Ethiopian Klipspringer 122. Oreotragus schillingsi - Maasai Klipspringer 123. Oreotragus stevensoni - Stevenson’s Klipspringer 124. Oryx beisa - Beisa Oryx 125. Oryx dammah - Scimitar-horned Oryx 126. Oryx gallarum - Galla Oryx 127. Oryx gazella - Gemsbok 128. Oryx leucoryx - Arabian Oryx 129. Ourebia montana - Sudan Oribi 130. Ourebia ourebi - Southern Oribi 131. Ovibos moschatus - Muskox 132. Ovis aries - Domestic Sheep 133. Ovis bochariensis - Bukhara Urial 134. Ovis canadensis - Bighorn Sheep 135. Ovis collium - Kazakhstan Argali 136. Ovis cycloceros - Afghan Urial 137. Ovis dalli - Thinhorn Sheep 138. Ovis gmelini - Anatolian Mouflon 139. Ovis karelini - Tianshan Argali 140. Ovis nigrimontana - Karatau Argali 141. Ovis nivicola - Snow Sheep 142. Ovis polii - Marco Polo Argali 143. Ovis vignei - Ladakh Urial 144. Pantholops hodgsonii - Chiru 145. Pelea capreolus - Rhebok 146. Philantomba bicolor - Zimbabwe Blue Duiker 147. Philantomba congica - Western Blue Duiker 148. Philantomba maxwelli - Maxwell’s Duiker 149. Philantomba monticola - Cape Blue Duiker 150. Pseudois nayaur - Greater Blue Sheep (Bharal) 151. Pseudoryx nghetinhensis - Saola 152. Raphicerus campestris - Steenbok 153. Raphicerus colonicus - Limpopo Grysbok 154. Redunca arundinum - Southern Reedbuck 155. Redunca bohor - Bohor Reedbuck 156. Redunca fulvorufula - Southern Mountain Reedbuck 157. Rupicapra ornata - Abruzzi Chamois 158. Rupicapra rupicapra - Alpine Chamois 159. Saiga tatarica - Western Saiga 160. Strepsiceros strepsiceros - Cape Kudu 161. Strepsiceros zambesiensis - Zambezi Kudu 162. Sylvicapra grimmia - Bush Duiker 163. Syncerus brachyceros - Lake Chad Buffalo 164. Syncerus caffer - Cape Buffalo 165. Syncerus nanus - Forest Buffalo 166. Taurotragus derbianus - Giant (Derby) Eland 167. Taurotragus oryx - Common Eland 168. Tetracerus quadricornis - Four-horned Antelope 169. Tragelaphus buxtoni - Gedemsa (Mountain Nyala) 170. Tragelaphus eurycerus - Bongo 171. Tragelaphus gratus - Western Sitatunga 172. Tragelaphus meneliki - Ethiopian Highlands Bushbuck 173. Tragelaphus ornatus - Chobe Bushbuck 174. Tragelaphus phaleratus - Central Bushbuck 175. Tragelaphus selousi - Zambezi Sitatunga 176. Tragelaphus sylvaticus - Cape Bushbuck CAMELIDAE - camels 1. Camelus bactrianus - Domestic Bactrian Camel 2. Camelus dromedarius - Arabian (One-humped) Camel 3. Camelus ferus - Wild Bactrian Camel 4. Lama glama - Llama 5. Lama guanicoe - Guanaco 6. Lama pacos - Alpaca 7. Lama vicugna - Vicuña CERVIDAE (18 genera) - deer 1. Alces alces - Moose (Eurasian Elk) 2. Axis axis – Chital 3. Axis calamianensis - Calamian Deer 4. Axis kuhlii – Bawean Deer 5. Axis porcinus - Hog Deer 6. Blastocerus dichotomus - Marsh Deer 7. Capreolus capreolus – Western Roe Deer 8. Capreolus pygargus - Eastern Roe Deer 9. Cervus albirostris – White-lipped Deer 10. Cervus canadensis - Wapit (American Elk) 11. Cervus elaphus - Western Red Deer 12. Cervus hanglu - Central Asian Red Deer 13. Cervus nippon - Sika Deer 14. Dama dama - Common Fallow Deer 15. Dama mesopotamica - Mesopotamian Fallow Deer 16. Elaphodus cephalophus - Tufted Deer 17. Elaphurus davidianus – Pere David’s Deer 18. Hippocamelus antisensis - Northern Andean Deer 19. Hippocamelus bisulcus - Southern
Recommended publications
  • PLAGUE STUDIES * 6. Hosts of the Infection R
    Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume.
    [Show full text]
  • Diet and Microhabitat Use of the Woodland Dormouse Graphiurus Murinus at the Great Fish River Reserve, Eastern Cape, South Africa
    Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve, Eastern Cape, South Africa by Siviwe Lamani A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare 2014 Supervisor: Ms Zimkitha Madikiza Co-supervisor: Prof. Emmanuel Do Linh San DECLARATION I Siviwe Lamani , student number 200604535 hereby declare that this dissertation titled “Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve , Eastern Cape, South Africa” submitted for the award of the Master of Science degree in Zoology at the University of Fort Hare, is my own work that has never been submitted for any other degree at this university or any other university. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on plagiarism and I have taken every precaution on complying with the regulations. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on research ethics and have taken every precaution to comply with the regulations. The data presented in this dissertation were obtained in the framework of another project that was approved by the University Ethics committee on 31 May 2013 and is covered by the ethical clearance certificate # SAN05 1SGB02. Signature: ii SUPERVISOR’S FOREWORD The format of this Master’s dissertation (abstract, general introduction and two independent papers) has been chosen with two purposes in mind: first, to train the MSc candidate to the writing of scientific papers, and second, to secure and allow for a quicker dissemination of the scientific knowledge.
    [Show full text]
  • No Evidence for Proteolytic Venom Resistance in Southern African Ground Squirrels
    1 No evidence for proteolytic venom resistance in southern African ground squirrels Molly A. Phillips, Jane M. Waterman, Pg Du Plessis, Martin Smit, and Nigel C. Bennett Abstract Many species that interact with venomous snakes show resistances to their venoms. The family Sciuridae has several North American members that harass venomous snakes and show proteolytic resistances in their sera. We examined sera collected from an African ground squirrel (Xerus inauris) against two sympatric venomous snakes (Bitis arietans and Naja annulifera) and found no support for proteolytic resistance. Our results add to our understanding of the risks in predator defense within the family Sciuridae. Keywords: Xerus inauris; Bitis arietans; Naja annulifera; Venom; Venom resistance; Predator-prey Animal venoms are a complex mixture of proteins and peptides that induce many destructive physiological effects for a variety of purposes, including prey capture (Fry et al., 2008; Jansa and Voss, 2011), digestion (Thomas and Pough, 1979), and defense (Kardong, 1982). The evolution of venom in snakes is thought to be a major factor leading to the radiation of over 2500 advanced snake species (Vidal, 2002). Some animals that interact with venomous snakes have physiological resistance to venom. As a predator, the Indian grey mongoose (Herpestes edwardsii) is resistant to the haemorrhagic effects caused by the venom of many snake species (Tomihara et al., 1990). California ground squirrels (Spermophilus (Otospermophilus) beecheyi) defend against snake predation by mobbing and have resistance against the proteolytic activity of the venom from northern Pacific rattlesnakes (Crotalus oreganus) (Biardi, 2000). The Cape ground squirrel (Xerus inauris) is a ground-dwelling sciurid that inhabits the arid regions of southern Africa (Skurski and Waterman, 2005).
    [Show full text]
  • Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
    RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R.
    [Show full text]
  • 29 Figure8. the Limited Rank Hydrophilic Sedge and Grass Patches Within the Central Valley Bottom Wetland Provide Suitable Roost
    Figure8. The limited rank hydrophilic sedge and grass patches within the central valley bottom wetland provide suitable roosting and foraging habitat for African Grass Owls. The high levels of human disturbances on the site including hunting with dogs; severely restricts the likelihood of any nests and limits potential roosting suitability. The annual burning of the site restricts the vegetative cover along the valley bottom wetland. Off-road bikes, quads and vehicle tracks transverse the entire site as well as helicopter training and landing on the site and open areas to the south of the site adjacent to the Waterval cemetery. African Grass Owls are found exclusively in rank grass, typically, although not only, at fair altitudes. Grass Owls are secretive and nomadic breeding in permanent and seasonal vleis, which it vacates while hunting or post-breeding, although it will breed in any area of long grass and it is not necessarily associated with wetlands. It marshlands it is usually outnumbered by the more common Marsh Owl (Asio capensis) 10:1 (Tarboton et al. 1987). Grass Owls nest on the ground within a system of tunnels constructed in mostly tall grass; peak-breeding activity (February- April) tends to coincide with maximum grass cover (Steyn 1982). Grass Owls specialise in large rodent prey, particularly Otomys vlei rats, although a wide range of rodent prey species, including Rhabdomys, Praomys, Mus, and Suncus, are taken (Earle 1978). Some local and nomadic movements in response to fluctuating food supplies, fire and the availability of suitable habitat can be expected (Steyn 1982). The ecological requirements of this species make it susceptible to many land-use changes impacting contemporary South Africa.
    [Show full text]
  • A Matter of Weight: Critical Comments on the Basic Data Analysed by Maestri Et Al
    DOI: 10.1111/jbi.13098 CORRESPONDENCE A matter of weight: Critical comments on the basic data analysed by Maestri et al. (2016) in Journal of Biogeography, 43, 1192–1202 Abstract Maestri, Luza, et al. (2016), although we believe that an exploration Recently, Maestri, Luza, et al. (2016) assessed the effect of ecology of the quality of the original data informs both. Ultimately, we sub- and phylogeny on body size variation in communities of South mit that the matrix of body size and the phylogeny used by these American Sigmodontinae rodents. Regrettably, a cursory analysis of authors were plagued with major inaccuracies. the data and the phylogeny used to address this question indicates The matrix of body sizes used by Maestri, Luza, et al. (2016, p. that both are plagued with inaccuracies. We urge “big data” users to 1194) was obtained from two secondary or tertiary sources: give due diligence at compiling data in order to avoid developing Rodrıguez, Olalla-Tarraga, and Hawkins (2008) and Bonvicino, Oli- hypotheses based on insufficient or misleading basic information. veira, and D’Andrea (2008). The former study derived cricetid mass data from Smith et al. (2003), an ambitious project focused on the compilation of “body mass information for all mammals on Earth” We are living a great time in evolutionary biology, where the combi- where the basic data were derived from “primary and secondary lit- nation of the increased power of systematics, coupled with the use erature ... Whenever possible, we used an average of male and of ever more inclusive datasets allows—heretofore impossible— female body mass, which was in turn averaged over multiple locali- questions in ecology and evolution to be addressed.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • Intestinal Helminths in Wild Rodents from Native Forest and Exotic Pine Plantations (Pinus Radiata) in Central Chile
    animals Communication Intestinal Helminths in Wild Rodents from Native Forest and Exotic Pine Plantations (Pinus radiata) in Central Chile Maira Riquelme 1, Rodrigo Salgado 1, Javier A. Simonetti 2, Carlos Landaeta-Aqueveque 3 , Fernando Fredes 4 and André V. Rubio 1,* 1 Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; [email protected] (M.R.); [email protected] (R.S.) 2 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7750000, Chile; [email protected] 3 Facultad de Ciencias Veterinarias, Universidad de Concepción, Casilla 537, Chillán 3812120, Chile; [email protected] 4 Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-229-780-372 Simple Summary: Land-use changes are one of the most important drivers of zoonotic disease risk in humans, including helminths of wildlife origin. In this paper, we investigated the presence and prevalence of intestinal helminths in wild rodents, comparing this parasitism between a native forest and exotic Monterey pine plantations (adult and young plantations) in central Chile. By analyzing 1091 fecal samples of a variety of rodent species sampled over two years, we recorded several helminth Citation: Riquelme, M.; Salgado, R.; families and genera, some of them potentially zoonotic. We did not find differences in the prevalence of Simonetti, J.A.; Landaeta-Aqueveque, helminths between habitat types, but other factors (rodent species and season of the year) were relevant C.; Fredes, F.; Rubio, A.V.
    [Show full text]
  • Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A
    Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A. simpsoni U.Miocene Florida(US) Abra see Ochotona Abrana see Ochotona Abrocoma U.Miocene-Recent Peru A. oblativa 60 cm? U.Holocene Peru Abromys see Perognathus Abrosomys L.Eocene Asia Abrothrix U.Pleistocene-Recent Argentina A. illuteus living Mouse Lujanian-Recent Tucuman(ARG) Abudhabia U.Miocene Asia Acanthion see Hystrix A. brachyura see Hystrix brachyura Acanthomys see Acomys or Tokudaia or Rattus Acarechimys L-M.Miocene Argentina A. minutissimus Miocene Argentina Acaremys U.Oligocene-L.Miocene Argentina A. cf. Murinus Colhuehuapian Chubut(ARG) A. karaikensis Miocene? Argentina A. messor Miocene? Argentina A. minutissimus see Acarechimys minutissimus Argentina A. minutus Miocene? Argentina A. murinus Miocene? Argentina A. sp. L.Miocene Argentina A. tricarinatus Miocene? Argentina Acodon see Akodon A. angustidens see Akodon angustidens Pleistocene Brazil A. clivigenis see Akodon clivigenis Pleistocene Brazil A. internus see Akodon internus Pleistocene Argentina Acomys L.Pliocene-Recent Africa,Europe,W Asia,Crete A. cahirinus living Spiny Mouse U.Pleistocene-Recent Israel A. gaudryi U.Miocene? Greece Aconaemys see Pithanotomys A. fuscus Pliocene-Recent Argentina A. f. fossilis see Aconaemys fuscus Pliocene Argentina Acondemys see Pithanotomys Acritoparamys U.Paleocene-M.Eocene W USA,Asia A. atavus see Paramys atavus A. atwateri Wasatchian W USA A. cf. Francesi Clarkforkian Wyoming(US) A. francesi(francesci) Wasatchian-Bridgerian Wyoming(US) A. wyomingensis Bridgerian Wyoming(US) Acrorhizomys see Clethrionomys Actenomys L.Pliocene-L.Pleistocene Argentina A. maximus Pliocene Argentina Adelomyarion U.Oligocene France A. vireti U.Oligocene France Adelomys U.Eocene France A.
    [Show full text]
  • Dolichotis Patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Silva Climaco das Chagas, Karine; Vassallo, Aldo I; Becerra, Federico; Echeverría, Alejandra; Fiuza de Castro Loguercio, Mariana; Rocha-Barbosa, Oscar LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, vol. 26, no. 1, 2019, -June, pp. 65-79 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45762554005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 26(1):65-79, Mendoza, 2019 Copyright ©SAREM, 2019 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.19.26.1.0.06 http://www.sbmz.com.br Artículo LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Karine Silva Climaco das Chagas1, 2, Aldo I. Vassallo3, Federico Becerra3, Alejandra Echeverría3, Mariana Fiuza de Castro Loguercio1 and Oscar Rocha-Barbosa1, 2 1 Laboratório de Zoologia de Vertebrados - Tetrapoda (LAZOVERTE), Departamento de Zoologia, IBRAG, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brasil. 2 Programa de Pós-Graduação em Ecologia e Evolução do Instituto de Biologia/Uerj. 3 Laboratorio de Morfología Funcional y Comportamiento. Departamento de Biología; Instituto de Investigaciones Marinas y Costeras (CONICET); Universidad Nacional de Mar del Plata.
    [Show full text]
  • A Review of Bristly Ground Squirrels Xerini and a Generic Revision in the African Genus Xerus
    Mammalia 2016; 80(5): 521–540 Boris Kryštufek*, Ahmad Mahmoudi, Alexey S. Tesakov, Jan Matějů and Rainer Hutterer A review of bristly ground squirrels Xerini and a generic revision in the African genus Xerus DOI 10.1515/mammalia-2015-0073 Received April 28, 2015; accepted October 13, 2015; previously Introduction published online December 12, 2015 Bristly ground squirrels from the arid regions of Central Abstract: Bristly ground squirrels Xerini are a small rodent Asia and Africa constitute a coherent monophyletic tribe tribe of six extant species. Despite a dense fossil record the Xerini sensu Moore (1959). The tribe contains six species group was never diverse. Our phylogenetic reconstruction, in three genera of which Atlantoxerus and Spermophilop­ based on the analysis of cytochrome b gene and including sis are monotypic. The genus Xerus in its present scope all known species of Xerini, confirms a deep divergence (Thorington and Hoffmann 2005), consists of four species between the African taxa and the Asiatic Spermophilopsis. in three subgenera: X. inauris and X. princeps (subgenus Genetic divergences among the African Xerini were of a Geosciurus), X. rutilus (subgenus Xerus), and X. eryth­ comparable magnitude to those among genera of Holarc- ropus (subgenus Euxerus). Recent phylogenetic recon- tic ground squirrels in the subtribe Spermophilina. Evi- struction based on molecular markers retrieved Xerus to dent disparity in criteria applied in delimitation of genera be paraphyletic with respect to Atlantoxerus (Fabre et al. in Sciuridae induced us to recognize two genera formerly 2012), therefore challenging the suitability of the generic incorporated into Xerus. The resurrected genera (Euxerus arrangement of the group.
    [Show full text]