Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus

Total Page:16

File Type:pdf, Size:1020Kb

Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ..................................................... 40 Species diversity in Coryphomys ....................................... 41 Phylogenetic affinities of Coryphomys ................................... 43 Paleoecology of Coryphomys ......................................... 63 Conclusions....................................................... 68 Acknowledgments.................................................. 69 References........................................................ 69 2 ABSTRACT Large collections of fragmentary animal bones excavated from archaeological contexts in East Timor between 1968 and 2002 provide new material referable to the recently extinct, gigantic murine genus Coryphomys. We document the upper and lower dentition and palatal anatomy of C. buehleri Schaub, 1937, and identify and name a second species of Coryphomys, based on differences in molar size and morphology and skeletal robusticity. Alternative interpretations of the observed morphological and metric variability (sexual dimorphism, resource-based polymorphism, sample heterochroneity) are each carefully assessed and rejected, and we conclude that the genus comprised two species of approximately similar body size. Preserved cranial elements of both species of Coryphomys feature a high degree of anatomical specialization, including an unusual elaboration of the maxillary sinus complex. Though the specialized anatomy of Coryphomys invites consideration of its phylogenetic relationships, this exercise is hindered by a demonstrable high level of homoplasy (i.e., multiple, independent evolutionary losses and gains) in many of the key craniodental features traditionally surveyed within Murinae, while other features are insufficiently well surveyed for broad-scale analysis. Nevertheless, our comparisons highlight two potentially related lineages among the geographically proximate Murinae—the Philippine Phloeomyini and the Australo-Papuan Hydromyini. The remains of Coryphomys are relatively scarce in all the archaeological samples, but distributional evidence suggests that both species of Coryphomys were found primarily in upland habitats. Late Pleistocene samples document their former presence at lower elevations, possibly reflecting cooler climatic conditions at that time. INTRODUCTION the majority of which were subsequently found elsewhere within the Indonesian archi- Timor is located near the eastern end of pelago and beyond (see Goodwin, 1979, for a the Indonesian archipelago and is the largest summary). Indeed, prior to the 1990s, the and highest of the Lesser Sunda Islands only potentially endemic Timorese mammals (fig. 1). The surrounding region is geologi- were two shrews (Crocidura tenuis: treated as cally young and tectonically active, the a synonym of C. fuliginosa [Blyth, 1835] by product of late Tertiary collision between Jenkins [1982] but maintained by Corbet and three major earth units—the Asian and Hill, 1992: 42; and C. macklotti: included Australian continental plates, and the Pacific within C. fuliginosa by Jenkins [1982] but oceanic plate. Plants and animals of Asian considered a synonym of C. tenuis by Corbet and Australian affinities intermingle across and Hill, 1992) and one bat, the enigmatic the region and it was this melding of two such Nyctophilus timorensis (see Goodwin, 1979; different biotas that inspired the nascent Kitchener et al., 1991d, for discussion of this biogeographer Alfred Russel Wallace, and taxon). The impoverished nature of the continues to excite the imagination of stu- Timorese mammal fauna was further high- dents of historical biogeography today. lighted by subsequent discovery through the Timor was one of the first of the Lesser course of the 1900s of endemic nonvolant Sunda Islands to be explored biologically, mammals on Seram and several other Mo- with collections made during the Baudin luccan islands (summarized by Helgen, 2003) expeditions of 1801 and 1803, and subse- and Flores (e.g., Sody, 1941; Kock, 1974). quently by Mu¨ller, Wallace, and others (see More recent surveys of the Lesser Sunda Hellmayr, 1914, and Mayr, 1944, for the Islands, particularly by staff of the Museum history of ornithological collecting). These Zoologicum Bogoriense and the Western expeditions encountered a distinctive avi- Australian Museum (Kitchener and Mar- fauna, including a significant number of yanto, 1993, 1995; Kitchener and Suyanto, endemic species and subspecies. In contrast, 1996; Kitchener et al., 1991a, 1991b, 1991c, the early expeditions encountered a fairly 1991d, 1994), also resulted in discovery of impoverished mammal fauna made up of the several additional endemic mammals includ- familiar suite of domesticates and commen- ing one native rodent extant on Timor, sals, and a moderate number of bat species, Rattus timorensis (Kitchener et al., 1991a). 3 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 341 Fig. 1. Regional map showing the location of Timor and other significant islands and continental landmasses of Wallacea. The grey shading indicates the approximate extent of land that is exposed with a sea level depression of 100–120 m below present level. Note that Timor remains isolated from other major islands and continental landmasses during episodes of lowered sea level. The first hint of a much higher endemic for detailed study. Mahoney distinguished a mammalian diversity on Timor came to light total of four large murids including C. during excavations by Alfred Bu¨hler (see buehleri, four smaller native murids, and Sarasin, 1936) in a limestone cave near two commensal murids, the latter found in Nikiniki in southwest Timor. A damaged association with remains of other introduced mandible and an incomplete femur of a very mammals including domesticates, and he large rodent were forwarded to Schaub figured each of the four ‘‘giant’’ rats (Maho- (1937), who described them as a new fossil ney, appendix 3 in Glover, 1986). Musser murid, Coryphomys buehleri. The dental (1981b) examined some of this new material morphology of C. buehleri was later revisited and commented briefly on the possible by Stehlin and Schaub (1951: 348) who affinities of the Timorese rodents, pending regarded the morphology of the anterior publication of Mahoney’s full account. portion of m1 to be unparalleled among Sadly, Mahoney did not complete his studies murines. Not long after, additional Timorese of the Timor rats before his death in 1985. rodent material was recovered by Th. L. Since that time the Glover material has Verhoeven from archaeological contexts at passed through several sets of hands with Lian Leluat on the Maubesi River, southern the intention of completing his work, but so Timor (Verhoeven, 1959). Hooijer (1965) far this goal remains unfulfilled. described and figured a total of three Additional impetus to document the pre- dentaries and though he noted considerable historic Timorese rodents arose after recom- morphological variation, especially in the mencement of archaeological research in East form of the anterior moiety of m1, he Timor in 2000 by archaeologists from the concluded that a single species was repre- Australian National University, Canberra. sented. Excavations in five cave sites, one of them Large samples of prehistoric mammal studied previously by the Portuguese archae- remains from Timor first came available ologist Antonio de Almeida, again produced through archaeological excavations by Ian abundant vertebrate remains from contexts Glover (1986) over the period 1966–1967. ranging from near contemporary back to Glover excavated a total of five sites using more than 38,000 BP (O’Connor et al., 2002; systematic methods and retrieved animal O’Connor and Aplin, 2007; Veth et al., 2005). remains from contexts dated back as far as Our studies of the combined Glover and the terminal Pleistocene. The enormously newly excavated collections inspired a new abundant and surprisingly diverse rodent interpretation of taxic diversity within this specimens were turned over to Jack
Recommended publications
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Diet and Microhabitat Use of the Woodland Dormouse Graphiurus Murinus at the Great Fish River Reserve, Eastern Cape, South Africa
    Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve, Eastern Cape, South Africa by Siviwe Lamani A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare 2014 Supervisor: Ms Zimkitha Madikiza Co-supervisor: Prof. Emmanuel Do Linh San DECLARATION I Siviwe Lamani , student number 200604535 hereby declare that this dissertation titled “Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve , Eastern Cape, South Africa” submitted for the award of the Master of Science degree in Zoology at the University of Fort Hare, is my own work that has never been submitted for any other degree at this university or any other university. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on plagiarism and I have taken every precaution on complying with the regulations. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on research ethics and have taken every precaution to comply with the regulations. The data presented in this dissertation were obtained in the framework of another project that was approved by the University Ethics committee on 31 May 2013 and is covered by the ethical clearance certificate # SAN05 1SGB02. Signature: ii SUPERVISOR’S FOREWORD The format of this Master’s dissertation (abstract, general introduction and two independent papers) has been chosen with two purposes in mind: first, to train the MSc candidate to the writing of scientific papers, and second, to secure and allow for a quicker dissemination of the scientific knowledge.
    [Show full text]
  • Implications of Climate Change for Food-Caching Species
    Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON by Alex Odenbach Sutton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Alex O. Sutton, April 2020 ABSTRACT Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON Alex Sutton Advisor: University of Guelph, 2020 Ryan Norris Knowledge of the demographic and environmental drivers of population growth throughout the annual cycle is essential to understand ongoing population change and forecast future population trends. Resident species have developed a suite of behavioural and physiological adaptations that allow them to persist in seasonal environments. Food-caching is one widespread behavioural mechanism that involves the deferred consumption of a food item and special handling to conserve it for future use. However, once a food item is stored, it can be exposed to environmental conditions that can either degrade or preserve its quality. In this thesis, I combine a novel framework that identifies relevant environmental conditions that could cause cached food to degrade over time with detailed long-term demographic data collected for a food-caching passerine, the Canada jay (Perisoreus canadensis), in Algonquin Provincial Park, ON. In my first chapter, I develop a framework proposing that the degree of a caching species’ susceptibility to climate change depends primarily on the duration of storage and the perishability of food stored. I then summarize information from the field of food science to identify relevant climatic variables that could cause cached food to degrade.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Gut Analysis of Small Non-Volant Mammals of Mt. Makiling, Luzon Island, Philippines Anna Pauline O
    Journal of Environmental Science and Management 17(2): 63-68 (December 2014) ISSN 0119-1144 Gut Analysis of Small Non-Volant Mammals of Mt. Makiling, Luzon Island, Philippines Anna Pauline O. de Guia1 and Ma. Niña Regina M. Quibod2 ABSTRACT Three non-native species (Rattus exulans, R. tanezumi and Mus musculus) of small non-volant mammals were recorded along various elevational gradients of Mount Makiling. Invertebrate remains and plant matter comprised the bulk of their diets based on the food items identifed. The identifed plant matter were leaves and seeds while invertebrates were easily identifable through body parts such as legs, head and antennae. Other contents identifed including vertebrate remains such as hair/fur, feathers and bones, plastics, rubber, stones, and intestinal worms were noted. Based on the calculated relative abundance of each food type, there is no signifcant difference in the diets of the three non-native rodent species. Preliminary results suggest that introduced rodents in Mt. Makiling have broad diets and there are no indications that their main diet includes native wildlife species. Traces of vertebrate remains, however, may indicate potential predation on wildlife species and further studies are needed to clarify this. Key words: rodents, gut analysis, endemic, non-native, elevational gradient INTRODUCTION The complexity of tropical mountain ecosystems endemic species (Rickart et al. 2007; Ong and Rickart 2008). have long provided haven for various Philippine wildlife R. exulans and R. tanezumi have been recorded at altitudes species. The elevational gradients provide various forest of 725 – 1450 masl on Mt. Isarog (Heaney et al. 1998). S. types while vertical stratifcation of trees offer habitat murinus, R.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3052, 19 pp., 9 figures, 1 table December 14, 1992 Sucking Lice (Insecta, Anoplura) from Indigenous Sulawesi Rodents: a New Species of Polyplax from a Montane Shrew Rat, and New Information About Polyplax wallacei and P. eropepli LANCE A. DURDEN' AND GUY G. MUSSER2 ABSTRACT Polyplax melasmothrixi, a new species of po- from Eropeplus canus from tropical upper mon- lyplacid sucking louse, is described from Melas- tane rain forest also in Central Sulawesi. Host and mothrix naso, a small-bodied shrew rat known habitat associations for these three species ofsuck- only from tropical upper montane rain forest in ing lice are discussed. Polyplax melasmothrixi and Central Sulawesi, Indonesia. The male ofPolyplax P. eropepli are both known only from montane wallacei is described from specimens collected from habitats in Central Sulawesi and both appear to Bunomys chrysocomus trapped in tropical lowland be host specific (to M. naso and E. canus, respec- evergreen rain forest in Central Sulawesi. A further tively). Contrastingly, P. wallacei parasitizes two specimen ofPolyplax eropepli, a taxon previously species ofBunomys in lowland forests and is known known only from the type series, is documented from North and Central Sulawesi. INTRODUCTION Melasmothrix naso, Bunomys chrysoco- Musser and Holden, 1991). The shrew rat, mus, and Eropeplus canus are three murine M. naso, and the large-bodied E. canus have rodents found only in forests on the Indo- been recorded only from montane rainforest nesian island of Sulawesi (Musser, 1987; formations in the mountainous central part I Assistant Professor and Assistant Curator, Institute of Arthropodology and Parasitology, Georgia Southern Uni- versity, Landrum Box 8056, Statesboro, Georgia 30460.
    [Show full text]
  • Retrotransposons
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11284–11289, September 1998 Evolution Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons OLIVIER VERNEAU*†,FRANC¸OIS CATZEFLIS‡, AND ANTHONY V. FURANO*§ *Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830; and ‡Institut des Sciences de l’Evolution, Case Courrier 064, Universite´Montpellier 2, 34095 Montpellier, France Communicated by Herbert Tabor, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, July 24, 1998 (received for review May 22, 1998) ABSTRACT Phylogenies based on the inheritance of This difference stems from the distinct biological properties shared derived characters will be ambiguous when the shared of these elements. L1 elements are prolific, self-replicating characters are not the result of common ancestry. Such mammalian retrotransposons that rapidly generate distinct characters are called homoplasies. Phylogenetic analysis also novel subfamilies consisting mostly of defective (pseudo) can be problematic if the characters have not changed suffi- copies (see legend to Fig. 1). The defective subfamily members ciently, as might be the case for rapid or recent speciations. are retained in the genome and diverge from each other with The latter are of particular interest because evolutionary time at the pseudogene (neutral) rate. The rapid generation of processes may be more accessible the more recent the specia- novel L1 characters keeps pace with speciation, and the tion. The repeated DNA subfamilies generated by the mam- sequence divergence of the various defective subfamily mem- malian L1 (LINE-1) retrotransposon are apparently ho- bers theoretically permits the dating of the speciations (4).
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
    Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus.
    [Show full text]
  • Habitat-Specific Shaping of Proliferation and Neuronal Differentiation in Adult Hippocampal Neurogenesis of Wild Rodents
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents Cavegn, Nicole ; van Dijk, R Maarten ; Menges, Dominik ; Brettschneider, Helene ; Phalanndwa, Mashudu ; Chimimba, Christian T ; Isler, Karin ; Lipp, Hans-Peter ; Slomianka, Lutz ; Amrein, Irmgard DOI: https://doi.org/10.3389/fnins.2013.00059 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-89370 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 3.0 Unported (CC BY 3.0) License. Originally published at: Cavegn, Nicole; van Dijk, R Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard (2013). Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents. Frontiers in Neuroscience:7:59. DOI: https://doi.org/10.3389/fnins.2013.00059 ORIGINAL RESEARCH ARTICLE published: 18 April 2013 doi: 10.3389/fnins.2013.00059 Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents Nicole Cavegn 1, R. Maarten van Dijk 1, Dominik Menges 1, Helene Brettschneider 2,3, Mashudu Phalanndwa 2,4, Christian T. Chimimba2,5 , Karin Isler6 , Hans-Peter Lipp 1 , Lutz Slomianka1 and Irmgard
    [Show full text]
  • Two New Species of Shrew-Rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines
    Journal of Mammalogy, 100(4):1112–1129, 2019 DOI:10.1093/jmammal/gyz066 Version of Record, first published online 6 June 2019, with fixed content and layout in compliance with Art. 8.1.3.2 ICZN. Two new species of shrew-rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines Downloaded from https://academic.oup.com/jmammal/article-abstract/100/4/1112/5506757 by Louisiana State University user on 05 November 2019 Eric A. Rickart,* Danilo S. Balete,† Robert M. Timm, Phillip A. Alviola, Jacob A. Esselstyn, and Lawrence R. Heaney Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA (EAR) Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA (DSB, LRH) Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA (RMT) Institute of Biological Sciences, University of the Philippines, Los Baños, Laguna 4031, Philippines (PAA) Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA (JAE) * Correspondent: [email protected] † Deceased 1 July 2017. The murine genus Rhynchomys includes the large-bodied Philippine “shrew-rats,” highly specialized members of the vermivorous clade of Philippine murids. Four species are recognized, all of which are endemic to Luzon Island: R. soricoides from mountains within the Central Cordillera, R. isarogensis from Mt. Isarog on the Bicol Peninsula, R. banahao from Mt. Banahaw in south-central Luzon, and R. tapulao from Mt. Tapulao in the Zambales Mountains. Field surveys in 2006 and 2008 revealed two additional populations of Rhynchomys, one from Mt.
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]