Mathematical Economics Comes to America: Charles S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Joseph Henry
MEMOIR JOSEPH HENRY. SIMON NEWCOMB. BEAD BEFORE THE NATIONAL ACADEMY OP SCIENCES, APRIL 21, 1880. (1) BIOGRAPHICAL MEMOIR OF JOSEPH HENRY. In presenting to the Academy the following notice of its late lamented President the writer feels that an apology is due for the imperfect manner in which he has been obliged to perform the duty assigned him. The very richness of the material has been a source of embarrassment. Few have any conception of the breadth of the field occupied by Professor Henry's researches, or of the number of scientific enterprises of which he was either the originator or the effective supporter. What, under the cir- cumstances, could be said within a brief space to show what the world owes to him has already been so well said by others that it would be impracticable to make a really new presentation without writing a volume. The Philosophical Society of this city has issued two notices which together cover almost the whole ground that the writer feels competent to occupy. The one is a personal biography—the affectionate and eloquent tribute of an old and attached friend; the other an exhaustive analysis of his scientific labors by an honored member of the society well known for his philosophic acumen.* The Regents of the Smithsonian Institution made known their indebtedness to his administration in the memorial services held in his honor in the Halls of Congress. Under these circumstances the onl}*- practicable course has seemed to be to give a condensed resume of Professor Henry's life and works, by which any small occasional gaps in previous notices might be filled. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Physics and Astronomy (Classes QB, QC, and Selected Portions of Z)
LIBRARY OF CONGRESS COLLECTIONS POLICY STATEMENTS Physics and Astronomy (Classes QB, QC, and selected portions of Z) Contents I. Scope II. Research strengths III. Collecting policy IV. Acquisition sources V. Best editions and preferred formats VI. Collecting levels I. Scope The Collections Policy Statement on Physics and Astronomy covers the subclasses of QB (Astronomy) and QC (Physics), as well as the corresponding subclasses of Class Z. In addition, some of the numerous abstracting and indexing services, catalogs of other scientific libraries, and specialized bibliographic finding aids for these fields are classed in Z. See also the related Collections Policy Statements for Chemical Sciences and Technology. II. Research strengths A. General The Library’s collecting strength in subclasses QB and QC is generally at the research level. The Library has long runs of many important serials such as American Journal of Physics, Journal of Applied Physics, Journal of the British Astronomical Association, and other publications of notable societies and associations, as well as the major abstracting and indexing services in physics and astronomy including Science Abstracts. Series A, Physics Abstracts, and its predecessors, and Astronomischer Jahresbericht and its successor, Astronomy and Astrophysics Abstracts. The Library’s extensive general collections in physics and astronomy are further enhanced by the numerous technical reports held in the Automation, Collections Support & Technical Reports Section, and by specialized materials held by the Manuscript, Rare Book and Special Collections, Geography and Map, and Prints and Photographs Divisions. In addition, the Library’s already extensive collection of U.S. astronomy and physics dissertations in microform is now supplemented by the digital dissertations archive from the ProQuest Dissertations and Theses Global database. -
The Generalization of Logic According to G.Boole, A.De Morgan
South American Journal of Logic Vol. 3, n. 2, pp. 415{481, 2017 ISSN: 2446-6719 Squaring the unknown: The generalization of logic according to G. Boole, A. De Morgan, and C. S. Peirce Cassiano Terra Rodrigues Abstract This article shows the development of symbolic mathematical logic in the works of G. Boole, A. De Morgan, and C. S. Peirce. Starting from limitations found in syllogistic, Boole devised a calculus for what he called the algebra of logic. Modifying the interpretation of categorial proposi- tions to make them agree with algebraic equations, Boole was able to show an isomorphism between the calculus of classes and of propositions, being indeed the first to mathematize logic. Having a different purport than Boole's system, De Morgan's is conceived as an improvement on syllogistic and as an instrument for the study of it. With a very unusual system of symbols of his own, De Morgan develops the study of logical relations that are defined by the very operation of signs. Although his logic is not a Boolean algebra of logic, Boole took from De Morgan at least one central notion, namely, the one of a universe of discourse. Peirce crit- ically sets out both from Boole and from De Morgan. Firstly, claiming Boole had exaggeratedly submitted logic to mathematics, Peirce strives to distinguish the nature and the purpose of each discipline. Secondly, identifying De Morgan's limitations in his rigid restraint of logic to the study of relations, Peirce develops compositions of relations with classes. From such criticisms, Peirce not only devises a multiple quantification theory, but also construes a very original and strong conception of logic as a normative science. -
Peirce for Whitehead Handbook
For M. Weber (ed.): Handbook of Whiteheadian Process Thought Ontos Verlag, Frankfurt, 2008, vol. 2, 481-487 Charles S. Peirce (1839-1914) By Jaime Nubiola1 1. Brief Vita Charles Sanders Peirce [pronounced "purse"], was born on 10 September 1839 in Cambridge, Massachusetts, to Sarah and Benjamin Peirce. His family was already academically distinguished, his father being a professor of astronomy and mathematics at Harvard. Though Charles himself received a graduate degree in chemistry from Harvard University, he never succeeded in obtaining a tenured academic position. Peirce's academic ambitions were frustrated in part by his difficult —perhaps manic-depressive— personality, combined with the scandal surrounding his second marriage, which he contracted soon after his divorce from Harriet Melusina Fay. He undertook a career as a scientist for the United States Coast Survey (1859- 1891), working especially in geodesy and in pendulum determinations. From 1879 through 1884, he was a part-time lecturer in Logic at Johns Hopkins University. In 1887, Peirce moved with his second wife, Juliette Froissy, to Milford, Pennsylvania, where in 1914, after 26 years of prolific and intense writing, he died of cancer. He had no children. Peirce published two books, Photometric Researches (1878) and Studies in Logic (1883), and a large number of papers in journals in widely differing areas. His manuscripts, a great many of which remain unpublished, run to some 100,000 pages. In 1931-58, a selection of his writings was arranged thematically and published in eight volumes as the Collected Papers of Charles Sanders Peirce. Beginning in 1982, a number of volumes have been published in the series A Chronological Edition, which will ultimately consist of thirty volumes. -
Peirce and the Founding of American Sociology
Journal of Classical Sociology Copyright © 2006 SAGE Publications London, Thousand Oaks and New Delhi Vol 6(1): 23–50 DOI: 10.1177/1468795X06061283 www.sagepublications.com Peirce and the Founding of American Sociology NORBERT WILEY University of Illinois, Urbana ABSTRACT This paper argues that Charles Sanders Peirce contributed signific- antly to the founding of American sociology, doing so at the level of philosophical presuppositions or meta-sociology. I emphasize two of his ideas. One is semiotics, which is virtually the same as the anthropologists’ concept of culture. This latter concept in turn was essential to clarifying the sociologists’ idea of the social or society. Peirce also created the modern theory of the dialogical self, which explained the symbolic character of human beings and proved foundational for social psychology. Politically Peirce was a right-wing conservative, but his ideas eventually contributed to the egalitarian views of culures and sub-cultures. In addition his ideas contributed, by way of unanticipated consequences, to the 20th- century human rights revolutions in the American legal system. Thus he was both a founder of sociology and a founder of American political liberalism. KEYWORDS early American sociology, inner speech, Peirce, semiotics Introduction Charles Sanders Peirce (1839–1914) originated several ideas that contributed to social theory, particularly to its philosophical underpinnings. Some of these are in unfamiliar contexts and in need of a slight re-framing or re-conceptualization. They also need to be related to each other. But, assuming these finishing touches, Peirce hadFirst a cluster of powerful insights that tradeProof heavily on the notions of the symbolic, the semiotic, the dialogical, the cultural and the self – ideas central to social theory. -
Scientific BIOGRAPHY and the CASE of GEORGES CUVIER
Hist. Sci.) xiv (1976), 101-137 1976HisSc..14..101O SCIENTIFic BIOGRAPHY AND THE CASE OF GEORGES CUVIER: WITH A CRITICAL BIBLIOGRAPHY Dorinda OutralU University of Reading The purpose of this introduction is to provide some interpretative tools for the reader of the body of secondary literature on Georges Cuvier which is examined in the attached critical bibliography. Criticism and analysis of existing work is therefore emphasized, and the problems in volved in constructing a positive biography of Cuvier are only briefly examined. Not only strictly biographical studies, but also work on all aspects of Cuvier's achievement, have been so strongly informed by pre suppositions about his character, that a knowledge of this bias and its characteristic expressions is nece.<;sary before previous work on Cuvier can be properly interp'reted. This bibliography is thus also intended as a necessary clearing of the ground before further study of Cuvier's career can be undertaken. This is true not only because it is necessary to discover the precise extent of factual inadequacy in our knowledge of Cuvier's life and achievement, but also because we need to increase our awareness of the role which biographical inquiry has played in the history of science, for without this awareness, the full implications of the adoption of the form cannot be assessed. Interest in Georges Cuvier has increased considerably during the last decade, but so far almost no account has been taken of the extraordinary biographical tradition through which we view him. Almost every presen tation of Cuvier since his death in 1832 has been dominated by emphases which were established very soon afterwards, and which have continued to monopolize the attention of historians of the life-sciences until very recently. -
“The Advancement of Science: James Mckeen Cattell and the Networks Of
1 The Advancement of Science: James McKeen Cattell and the Networks of Prestige and Authority, 1894-1915 ROBIN VANDOME The need for an authoritative and widely-accessible American scientific periodical was keenly felt by 1880, when the weekly Science was established in New York by the journalist John Michels, with the financial backing of scientific entrepreneur Thomas Edison. As the astronomer and mathematician Simon Newcomb had observed with regret in 1874, “The difficulty is not that our scientific men are indifferent to knowledge, but that they do not go through the laborious and thankless process of digesting and elaborating their knowledge and publishing it to the world.”1 Some promising scientific publications had, in fact, emerged, ranging from the commercial Scientific American (established in 1846) and the specialist American Naturalist (established in 1867 and limited, as Newcomb noted, “entirely to biology”), to the more philosophically-inclined magazine aimed at a broadly-educated audience, Popular Science Monthly (established in 1872).2 But the only periodical that met Newcomb’s high standards for the publication of new research was the venerable American Journal of Science and Arts (established in 1818), and even that title was restricted largely to the earth sciences at the expense of many new disciplines.3 Multiple efforts to cater to general scientific interests in a single periodical were made in the 1870s and 1880s, only for most to flounder after a few months or years, in line with the typical pattern for new magazines in this period.4 The shorter-lived contemporaries of Science included the Science Record (1872-77), Scientific Monthly (1875-76), Scientific Observer (1877-87), Science News (1878-79), Illustrated Scientific News (1878-81), Scientific Man (1878-82), a second Science Record (1884-85), Science Review (1885-86), and Science and Education (1886-87), among still others.5 By 1900, however, Science clearly 2 filled the gap felt by the likes of Newcomb. -