A Complete Bibliography of Publications in the Journal of Mathematical Physics: 2010–2014
Total Page:16
File Type:pdf, Size:1020Kb
A Complete Bibliography of Publications in the Journal of Mathematical Physics: 2010{2014 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 27 March 2021 Version 1.28 Title word cross-reference (1 + 1) [1000, 1906, 294, 2457]. (1 + 2) [1493, 1654]. (1; 0) [2095]. (1=p)nqn [1052]. (2 + 1) [2094, 669, 1302, 718, 449, 1012, 377, 2620, 2228]. (3 + 1) [1499]. (4; 4; 0) [2306]. (β,q) [1297]. (C; +) [1885]. (D + 1) [2054, 2291]. (d + s) [2255]. (L2; Γ,χ) [1885]. (N + 1) [1334, 155]. (n + 3) [490]. (N;N0) [1789]. (p; q; ζ) [500]. (p; q; α, β; ν; γ) [1113]. (q; µ) [500]. (q; N) [1659]. (R; p; q) [300]. ^ 2 (SO(q)(N);Sp^(q)(N)) [1659]. + [2688]. −1 [1394]. −1=2 [977]. −a=r + br [945]. 1 [2659, 1714, 1004, 1212, 632, 2154, 694, 1952, 354, 661, 1985, 752]. 1 + 1 [2332]. 1 + 2 [2484]. 1=2 [1004, 144, 759]. 1 <α≤ 2 [598]. 2 [518, 2225, 2329, 1, 1009, 2562, 2251, 1903, 1947, 1352, 1597, 465, 2675, 454, 891, 899, 2031]. 2 + 1 [884, 938, 217, 681, 939]. 2d [356]. 2N [1406]. 3 [287, 1875, 1951, 2313, 2009, 518, 2155, 799, 1095, 810, 2553, 2260, 2579, 2067, 1882, 2554, 1340, 2251, 1069, 2257, 2169, 1006, 1992, 2195, 2289]. 3 + 1 [1939]. 4 [2402, 874, 585, 1906, 640]. 4 + 2 [1939]. 4d [356]. 5 [80, 1560, 924, 2046]. 50 (1) ∗ [22]. 6j [2111]. 9 [692]. [381]. [628, 491, 236]. 0 [1462]. 2 [1398]. 3 [1272]. ∗ (1) (1) n [2517, 1603]. A; D; E [655]. a = 4 [379]. A3 [2169]. A1 [2382]. A2 [2382]. 1 2 (2) (1) ∗ A2 [2382]. A4 [1155]. An [2568]. Ar [356]. AdS2 [1004]. α [488, 136]. α [1899]. B [705, 286, 225, 710, 567]. B(m; n) [1507]. −1(ln) −1+r;2=(1−r) B11 + B + L2 [1798]. B2;s [1777]. B [412]. B [1974]. β Xr 2 3 [1431, 428, 1469, 2287, 2419, 132]. βγ [411]. C [1677, 2156]. C∗ [2213]. C∗ 1 k 2 [1600, 802]. C [1391]. C [2269]. C3 [1974]. χ [543]. D [471, 2636, 2331, 1492, 1247, 572, 1915, 134, 1954, 945, 2050, 963]. D =11 (1) [1817]. D = 2 [781, 1436, 944]. D = 4 [1817]. DN [782]. Dn [1777]. y [903]. 2 x¨ + f(x)_x + g(x) = 0 [2719, 2718, 2707, 1836, 2325]. δ [1807, 2163, 2294]. E10 ⊗r [1988]. E6 [2188, 1946]. E7 [97]. E8 [97]. ` [2012]. Enduk (2)(Ωk ) [929]. (3) ⊗1 [622]. f [2684]. f(R) [1025]. F 2 [2537]. G [2536, 2153, 1803, 2459]. G2 ` [2135, 412]. G2(1) [1119]. G2(2) [1644]. GF (p ) [202]. GL(3;C) [2195]. gl(mjn) [2675, 1647, 2154]. H [1621, 2039, 1088, 2496]. Hn(osp(1j2); M) [447]. P^ [97]. K [289, 2094, 657, 1460, 2016]. κ [791]. l [47, 1336, 2519, 2016]. L2 p [2573, 925]. L [332, 297, 918, 1933]. L2 [2106]. Λ [2039]. M [447]. M2(C) N 1 N [696]. M2 × W Σd−2 [1770]. Mg [988]. cH [1345]. CP [1781]. CP 3 + 1jn 3 [2658, 1345]. D2 [1503]. E [1040]. Q=Z [826]. R [244]. R [184]. R × M 4 N 2 [538]. R [1107]. R [1709, 338]. Z [1721]. Z2 [257, 1167]. Z3 [1593]. z4m e(1) f g gl mjn sl 2j1 sl 3 [933]. 6 [2188]. 4 [248]. 2 [248]. ( ) [453]. ( ) [1388]. ( ; C) [1003]. sl(n; C) [735]. sl−∞(2) [1699]. sp(4; C) [1003]. N [996, 2508, 1, 2232, 1349, 938, 427, 270, 191, 1567, 1293, 773, 115, 112, 1439, 1400, 2419, 533, 1068, 1002, 239, 550, 1281, 490, 1831, 354, 296, 175, 2577, 686]. N =(0; 4) [555]. N =(2; 2) [2492]. N = 1 [2337, 2519]. N =2 [2012, 135, 1632, 379, 385, 1336, 356, 1273]. N =2; 4; 8 [1247]. N =4 [2306, 632, 1487, 2169]. N =4; 7; 8 [1492]. N = 5 [924, 1289]. N = 6 [2155]. N =6; 8 [1095]. N = 8 [472, 1909]. O [856]. O(3) [908]. p 2 2k 4 [1298, 2629, 2561, 220, 1101, 1664, 2576]. @ [403]. Φ [437]. Φ [414]. Φ2 [1226]. π [1370, 2640, 281]. pp [1065, 1688]. psl(2j2) [2460]. PT [2076]. Q [1881, 1878, 840, 2388, 1297, 432, 2383, 2489, 79, 427, 281, 1196, 2172, 584, 833, 404]. q>1 [833, 136]. q2 [860, 1662]. q2 [860]. R [1388, 2660, 1403, 1622, 1130, 2026, 1603, 388, 1399, 2056, 2432]. R2 [2017, 2151]. R3 [2107]. R6 [444]. Rd [2153]. RN [2105, 2099, 1307, 1943]. ρ [1357]. S [843]. s = −1 [1338]. S2 [2027, 1406]. S3 [850]. sh(2j2) [2055]. σ [2659, 632, 2488]. sl(2;C) [2186]. SL(2; C) [606, 411]. sl(3;C) [1945]. sl(4; C) [622]. sl(m +1jn) [2386]. sl(n) [1153]. SL(N;C) [672]. sl(nk; C) [401]. SO(10; 2) [865]. so(2; 2k + 2) [1826]. so(3; R) [2631]. so(3;R) [2058]. SO(4) [2494]. SO(5) [126, 448]. SO(8) [692]. SO(9) × SU(2) [556]. SOq(N) [1944]. Sp(m) [243]. SU(1; 1) [2270, 606, 576, 2116]. SU(2) [1681, 360, 2502, 556, 581]. SU(2) ⊗ SU(2) ≈ SO(4) [2494]. SU(2; 2) [353, 2461]. SU(3) [1681, 320]. SU(6) ⊃ SU(3) ⊗ SU(2) [753]. SU(8) ⊃ SU(4) ⊗ SU(2) [753]. SU(N) × [672, 781, 434, 2131, 2184,P 2636, 780]. SU(N) SU(N) [1039]. SU(r) [1571]. d − 2 s d SU2;1 [900]. SU3 [900]. i=1( @i ) [2050]. T [274, 2534, 2644]. T [1964]. T0 3 [1536]. Tc [878]. τ [2442, 2062]. θ [88]. u [2389]. U(1) [2670, 1141, 539, 273]. ^ U(2; 2) [2387]. U(N) [360, 795]. U(Ω) ⊗ SU(r) [1571]. Uq(sl(M +1jN +1)) 0 ^ 0 slc j b j [1785]. Uq(sl(2)) [2489]. Uq(so3) [771]. Uq( (N 1)) [1401]. Uq(sl(N 1)) [1124]. (1) j 0 b Uq;p(AN−1) [619]. Uq[gl(2 1)] [1078]. Uq (sl(2)) [1662]. V [2688, 1973]. V4 [411]. ' [1196, 1803]. '4 [1262, 1458]. # [1031]. _ [2569]. W [60, 408, 572]. N 0 d j W (2; 2) [60, 1892]. W1;p [1913]. W1 [848]. Wp;p [1354]. wUr;s(osp(1 2n)) [2112]. X2 [112]. Xm [2118]. Y (slN ) [1674]. Z [2276]. -actions [2153]. -adic [2561]. -affine [1000]. -algebra [60]. -algebras [628, 1095, 1167]. -ary [1068, 1006]. -average [427]. -bar [963]. -bigradings [257]. -body [2553, 1906, 2046, 175, 1567, 1293, 115, 1334, 1439]. -bounds [1933, 918]. -bridge [2562]. -categories [903, 2534, 2644]. -cohomology [1899]. -completely [488]. -component [1009, 454, 899]. -condition [2389]. -conformal [2012, 1336, 2519]. -constants [1031]. -constrained [2094]. -coordinated [1803]. -cosmology [1025]. -cosymplectic [657]. -coupled [191]. -covariant [1903]. -critical [925]. -crystal [1777]. -curvatures [2289]. -d [1352]. -deformed [1878, 1113, 2383, 404, 300, 1622]. -Derivations [1196]. -dim [640]. -dimensional [2094, 669, 2620, 490, 2402, 874, 2050, 449, 2554, 1499, 1906, 692, 2251, 294, 939, 1493, 2228, 1012, 377, 891, 572, 1915, 2054, 2291]. -dimensions [1954, 945, 2508]. -divergence [543]. -dressing [403]. -elliptic [1153]. -ensemble [428]. -ensembles [1431]. -entropy [833]. -equation [225, 710, 567]. -equivariant [1803, 320]. -exponential [500, 281, 584]. -exponentials [432]. -Fock [1196]. -fold [1992, 2195, 112, 1400]. -form [1460]. -function [2062]. -functions [2442, 1621, 2636]. -gauge [2289]. -Gaussian [1297]. -generalization [2684]. -generalized [1297]. -geometry [2135]. -graded [79, 924, 2156, 1593]. -Green [297]. -Hahn [860]. -Hermite [132]. -integrability [1391]. -invariant [2670, 243, 273]. -Jacobi [1469, 1662]. -Kamp´e [860]. -Korteweg [379]. -Laguerre [112]. -Laplacian [220, 1101, 1664, 2576]. -Leibniz [686, 2016]. -Lie [1068, 287, 1875, 239, 550, 2260, 2579, 490, 1831, 1069]. -matrices [1, 2026, 388, 1399, 2056, 97]. -matrix [1603, 2432, 1388, 2660, 1130]. -model [2488]. -models [2659, 632, 2287]. -module [2331, 1492, 1247]. -modules [236, 802, 2213]. -norm [2573]. -Onsager [2388]. -operation [1403]. -operators [856]. -particle [354, 270]. -perturbed [1357]. -photon [2031]. -ple [2016]. -plurality [274]. -point [354]. -positive [465]. -pseudoalgebraic [1088]. -pseudodifferential [2496]. -representable [1]. -soliton [1349, 773, 1789, 533]. -space [585]. -spaces [2039]. -sphere [1951, 810, 1281, 1882]. -spin [1298, 2459]. -stability [2106]. -stable [136]. -state [47]. -symbol [2269]. -system [411]. -systems [2569, 2536, 2153]. -tensor [1600]. -ternary [491]. -Theory [1262]. -theta [1885]. -time [1686]. -topology [1536]. -torus [2067]. -totally [2172]. -type [1807, 782, 408, 705]. -unit [427]. -valence-bond-solid [840]. -vortex [996, 1406]. -wave 4 [2629, 2255, 2577]. -waves [1065, 1688]. /anti [649]. /anti-BRST [649]. 1/2 [2416]. 37 [109]. 43 [942]. 45 [2295, 110]. 46 [726, 2183]. 47 [2326]. 48 [157]. 49 [2021, 2621, 262]. 50 [261, 197, 263, 1252, 775, 1083, 511, 1373, 397, 198, 200, 1507]. 51 [863, 600, 510, 635, 111, 2620, 2708, 599, 509, 636, 776, 899]. 52 [1375, 2020, 1887, 774, 2626, 1129, 1128, 823, 1374, 2619, 1933]. 53 [1611, 2572, 1409, 1931, 1666, 1612, 1665, 1932, 1251, 1934, 2709, 1508, 2253, 1217]. 54 [2717, 2625, 2713, 2531, 2719, 2712, 1935, 2064, 2710, 2718, 2715, 2707, 2325, 2184, 2182, 1983, 1984]. 55 [2622, 2451, 2362, 2707, 2623, 2294, 2532]. 56 [2666, 2662, 2714, 2624]. 57 [2705, 2711]. 58 [2716]. 80 [199]. 80th [1410]. = [2282]. ABC [1156]. ABCD [2633]. Abel [1163, 2627, 2205, 361, 273]. abelian [1260, 1684, 1700, 1781, 437, 1976, 2132, 1258, 271, 948, 1050, 555, 692, 761, 484]. Ablowitz [237, 2514, 1783, 1929, 1838, 1845]. above [1192, 1470, 1757]. above-threshold [1757]. Abraham [2033]. abruptly [892]. Absence [2250, 1033, 541, 1421]. Absolutely [1415, 2115, 541, 2266]. absorption [1855, 1751].