Moon Course Section 20-26 V1.0

Total Page:16

File Type:pdf, Size:1020Kb

Moon Course Section 20-26 V1.0 Around the Moon in 28 Days: Lunar Observing for Beginners Course Notes Section 20 - Lunar Day 15 Section 21 - Lunar Day 16 Section 22 - Lunar Day 17 Section 23 - Lunar Day 18 Section 24 - Lunar Day 19 Section 25 - Lunar Day 20 Section 26 - Lunar Day 21 (Last Quarter) Copyright © 2010 Mintaka Publishing Inc. Section 20 - Lunar Day 15 Tonight we'll begin a limb-to-limb lunar history adventure by learning about the Soviet probe, Lunik 9. In 1966, the unmanned lunar traveler became the first to achieve a soft landing on the Moon’s surface and successfully transmit photographs back to Earth. The lander weighed in at 99 kg, and had four outward opening antenna petals. Within five minutes of touchdown on January 31, the antennae sprang to life and the on-board television cameras began broadcasting the first panoramic images of the surface of another world – thus proving a lander would not simply sink into the lunar dust. Last contact with the spacecraft occurred just before midnight on February 6, 1966. If you'd like to see where Lunik 9’s remains stand, turn your binoculars or telescopes towards the western lunar limb for Oceanus Procellarum. On its western edge, you can easily identify the dark oval of crater Grimaldi. About one Grimaldi- length northward and on the western shore of Procellarum is where you will find Lunik 9’s resting place. Figure 20-1: The major features of the eastern part of the Moon on Day 15 Around the Moon in 28 Days: Lunar Observing for Beginners Figure 20-2: Image from the Luna 9 lander in February, 1966 in the Oceanus Procellarum Now let's go for the opposite limb to check out the eastern edge of Mare Crisium in a different relief. The bright point on the shoreline is Promontorium Agarum with shallow crater Condorcet to its east. Look along the shore of the mare for a southern mountain known as Mons Usov just west of Condorcet. At its northern edge that Luna 24 landed. This mission was the last of the Soviet Luna spacecraft and the third to successfully retrieve and return. It carried back 170 grams of lunar samples to the Earth on August 22 1976. For over thirty years, Luna 24 held the distinction of being the final spacecraft from any country to have landed on the Moon, only to have that record broken by Chandrayaan-1 in 2008. However, the record still holds for "soft landings"! Luna 24 also had the distinction as the last spacecraft to retrieve extra-terrestrial samples until Stardust returned in 2006. Just south of Lunik 24's final resting place is the silent Luna 23, which touched down on November 6, 1974. While it was intended to take deep core samples and return to Earth, the mission partially failed. However, it still successfully transmitted back three days of data. Directly to its west are the remains of Luna 15. It wasn't quite so lucky, though... it smashed into the surface on July 21, 1969, just a day after Armstrong and Aldrin walked on the Moon’s surface Unfortunate? Hardly. It began the revolutionary age of creating good relations between the Soviet Space Agency and NASA, since each agency had to share flight plans! Around the Moon in 28 Days: Lunar Observing for Beginners Figure 20-3: A rendering of Luna (or Lunik) 24 (courtesy of NASA) Are you ready to see a crater that few ever get to see? Then look along the edge of the east limb and slightly south of central to identify crater Humboldt. Seen on the curve, this roughly 200 km wide crater holds a wealth of geographical details. Its flat, cracked floor has central peaks and a small mountain range, as well as radial rille structure. If libration and steady skies are in your favor, power up and look for dark pyroclastic areas and a concentric inner crater. Look for long, shallow Legendre and Phillips on Humboldt's west wall. It's not often you'll have a chance to study this crater, and your best bet is during the early part of the waning phase. Figure 20-4: Humboldt crater (courtesy of Damian Peach) Around the Moon in 28 Days: Lunar Observing for Beginners Section 21 - Lunar Day 16 As the Moon begins to wane, we see features in a much different light, since the shadows are cast on the other side! Tonight our mission is to return to Mare Crisium and power up with the telescope to discover some of the outstanding details that can be seen. Use the map below to help you discover these wonderful features: Figure 21-1: Map of the Mare Crisium Region (image courtesy of Roger Warner, annotations courtesy of Tammy Plotner) (1) Bernoulli, (2) Geminus, (3) Burckhardt, (4) Cleomides, (5) Debes, (6) Tralles, (7) Lacus Bonitatis, (8) Macrobius, (9) Tisserand, (10) Fredholm, (11) Proclus, (12) Palus Somni, (13) Swift and Pierce, (14) Picard, (15) Sinus Concordiae, (16) Taruntius, (17) Lick, (18) Shapely, (19) Firmicus, (20) Promontorium Agarum. Around the Moon in 28 Days: Lunar Observing for Beginners For a telescopic challenge, continue south to identify Petavius on the southern terminator. Just beyond its east wall, look for a ridge that extends from north to south separated by darkness from Petavius. This is Palitzsch, a very strange, gorge-like formation that looks as if it was caused by a meteor plowing through the Moon's surface. Palitzsch's true nature wasn't known until 1954 when the incomparable Sir Patrick Moore resolved it as a "crater chain" using the 25" Newall refractor at Cambridge University Observatory. While you’re admiring Petavius and its branching rima, keep in mind this 80-kilometer long crack is a buckle in the lava flow across the crater floor! Figure 21-2: Petavius Region (courtesy of Peter Lloyd). Around the Moon in 28 Days: Lunar Observing for Beginners Section 22 - Lunar Day 17 Tonight Mare Crisium slowly disappears into the shadows. Just northwest of its shore is the “lunar challenge” crater, Macrobius. Spanning 64 kilometers in diameter, this Class I impact crater drops below the surface to a depth of nearly 3600 meters - about the same as many of our Earthly mines. Its central peak rises back up, and at 1100 meters may be visible as a small speck inside the crater's interior. Power up and look at how steep its crater slopes are. Can you spot the smaller impact crater Macrobius O to the southeast and conjoining crater Tisserand to the east? Check out how the sunlight highlights the walls. In this particular light you can see how high and terraced they really are! Figure 22-1: The major features of the Moon on Day 17 Around the Moon in 28 Days: Lunar Observing for Beginners Figure 22-2: Macrobius Crater (courtesy of Damian Peach) For another great challenge, look where Mare Fecunditatis and Mare Tranquillitatis meet for the conspicuous crater Taruntius. Formed in the Copernician era and perhaps only about a billion years old, this 58 kilometer wide ring is really eroded – especially considered how young it is compared to other craters. Figure 22-3: Taruntius crater (courtesy of Damian Peach) Around the Moon in 28 Days: Lunar Observing for Beginners One of the reasons for looking during the waning phase is because you'll stand a better chance at spotting some of the many "ghost rings" which accompany Taruntius and the unusual amounts of lava floodings to the southwest. If the lighting is right, apply high magnification in a telescope and you'll notice its floor is fractured from an upheaval and the northwest rim has been broken up by Cameron crater. Did you notice a slightly darker area around Cameron? Good for you for being observant! Chances are this is a deposit of volcanic ash from a small vent. Can you spot the other just south of the central peak? Now let's have some quiet time as we view an area highlighted by sunset - the Caucasus Mountains. Easily spotted in both binoculars and small telescopes, this range towers some 5182 meters above the surrounding plains - making its peaks as high as Mount Ararat. As the shadows throw the rugged terrain into bold relief, take the time to enjoy watching nightly as the terminator moves along the lunar surface. As time passes you can follow the mountain's shadows shortening and details emerging. It's a very peaceful experience. Figure 22-4: The Caucasus Mountains (courtesy of Greg Konkel) Around the Moon in 28 Days: Lunar Observing for Beginners Section 23 - Lunar Day 18 Tonight the Moon gives a wonderful opportunity to revisit ancient landmark crater Posidonius and learn some more history. Start by identifying crater Charconac to Posidonius' southeast. It is far older than Posidonius itself and its steep northwest slopes are nearly obliterated by the larger crater's presence. Charonac is just one of those features we don't usually study - although we should. At an estimated 4 billion years old, it sprang to life in the pre-Imbrian period, and one look at its distressed floor tells of a violent life. Look for craterlet Chacornac A and Rimae Chacornac inside of its 50 kilometer diameter expanse! Figure 23-1: The major features of the Moon on Day 18 Around the Moon in 28 Days: Lunar Observing for Beginners Figure 23-2: The craters Posidonius and Charconac (Cacornac) and region. If you continue southward from Posidonius and Charconac along the edge of Mare Serenitatis, you'll catch partially open crater Le Monnier.
Recommended publications
  • Replace This with the Actual Title Using All Caps
    RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kassandra Martin-Wells January 2013 © 2013 Kassandra Martin-Wells RADAR POLARIZATION PROPERTIES AND LUNAR SECONDARY CRATERING Kassandra Martin-Wells, Ph. D. Cornell University 2013 Age dating of planetary surfaces relies on an accurate correlation between lunar crater size-frequency distributions and radiometric ages of samples returned from the Moon. For decades, it has been assumed that cratering records are dominated by “primary” impacts of interplanetary bolides [McEwen et al., 2005]. Unlike primary craters, secondary craters, which originate as ejecta from large primary events, occur in large clusters in both space and time. It was long believed that the majority of secondary craters formed at low velocities near their parent crater, resulting in a class of craters with morphologies which are easily distinguished from primary craters of a similar size [McEwen et al., 2005]. However, recent work by Bierhaus et al. (2005), McEwen et al. (2005) argues that cratering records in the Solar System may be strongly contaminated by hard-to-identify secondary craters. They advise caution when relying on counts at small diameters [McEwen et al., 2005; Bierhaus et al., 2005]. Despite the difficulties, something must be done to improve the accuracy of age dates derived from size-frequency distributions of small craters. In this thesis, a method of secondary crater identification based on radar circular polarization properties is presented. The radar polarization and photographic studies of lunar secondary craters in this thesis reveal that secondary cratering is a widespread phenomenon on the lunar surface.
    [Show full text]
  • Geoscience and a Lunar Base
    " t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history.
    [Show full text]
  • Geologic Structure of Shallow Maria
    NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) ­ 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir­ cular basins.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • January 2019 Cardanus & Krafft
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map.
    [Show full text]
  • General Index
    General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d.
    [Show full text]
  • COURT of CLAIMS of THE
    REPORTS OF Cases Argued and Determined IN THE COURT of CLAIMS OF THE STATE OF ILLINOIS VOLUME 39 Containing cases in which opinions were filed and orders of dismissal entered, without opinion for: Fiscal Year 1987 - July 1, 1986-June 30, 1987 SPRINGFIELD, ILLINOIS 1988 (Printed by authority of the State of Illinois) (65655--300-7/88) PREFACE The opinions of the Court of Claims reported herein are published by authority of the provisions of Section 18 of the Court of Claims Act, Ill. Rev. Stat. 1987, ch. 37, par. 439.1 et seq. The Court of Claims has exclusive jurisdiction to hear and determine the following matters: (a) all claims against the State of Illinois founded upon any law of the State, or upon an regulation thereunder by an executive or administrative ofgcer or agency, other than claims arising under the Workers’ Compensation Act or the Workers’ Occupational Diseases Act, or claims for certain expenses in civil litigation, (b) all claims against the State founded upon any contract entered into with the State, (c) all claims against the State for time unjustly served in prisons of this State where the persons imprisoned shall receive a pardon from the Governor stating that such pardon is issued on the grounds of innocence of the crime for which they were imprisoned, (d) all claims against the State in cases sounding in tort, (e) all claims for recoupment made by the State against any Claimant, (f) certain claims to compel replacement of a lost or destroyed State warrant, (g) certain claims based on torts by escaped inmates of State institutions, (h) certain representation and indemnification cases, (i) all claims pursuant to the Law Enforcement Officers, Civil Defense Workers, Civil Air Patrol Members, Paramedics and Firemen Compensation Act, (j) all claims pursuant to the Illinois National Guardsman’s and Naval Militiaman’s Compensation Act, and (k) all claims pursuant to the Crime Victims Compensation Act.
    [Show full text]
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • B. Apollo 16 Regional Geologic Setting
    B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1).
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]