Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings Series

Total Page:16

File Type:pdf, Size:1020Kb

Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings Series Spine for 280 pages: 14,48 mm Management and Storage of Research Reactor Spent Nuclear Fuel Research Reactor Spent Storage of Management and Proceedings Series Management and Storage of Research Reactor Spent Nuclear Fuel Proceedings of a Technical Meeting held in Thurso, United Kingdom, 19–22 October 2009 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–138210–8 ISSN 0074–1884 MANAGEMENT AND STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PANAMA ALBANIA HAITI PAPUA NEW GUINEA ALGERIA HOLY SEE PARAGUAY ANGOLA HONDURAS PERU ARGENTINA HUNGARY PHILIPPINES ARMENIA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF QATAR BAHRAIN IRAQ REPUBLIC OF MOLDOVA BANGLADESH IRELAND ROMANIA BELARUS ISRAEL RUSSIAN FEDERATION BELGIUM ITALY Rwanda BELIZE JAMAICA SAUDI ARABIA BENIN JAPAN SENEGAL BOLIVIA JORDAN SERBIA BOSNIA AND HERZEGOVINA KAZAKHSTAN SEYCHELLES BOTSWANA KENYA SIERRA LEONE BRAZIL KOREA, REPUBLIC OF BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA SWAZILAND CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA COLOMBIA LUXEMBOURG SYRIAN ARAB REPUBLIC CONGO MADAGASCAR TAJIKISTAN COSTA RICA MALAWI THAILAND CÔTE D’IVOIRE MALAYSIA THE FORMER YUGOSLAV CROATIA MALI REPUBLIC OF MACEDONIA CUBA MALTA TOGO CYPRUS MARSHALL ISLANDS TRINIDAD AND TOBAGO CZECH REPUBLIC MAURITANIA TUNISIA DEMOCRATIC REPUBLIC MAURITIUS TURKEY OF THE CONGO MEXICO UGANDA DENMARK MONACO DOMINICA MONGOLIA UKRAINE DOMINICAN REPUBLIC MONTENEGRO UNITED ARAB EMIRATES ECUADOR MOROCCO UNITED KINGDOM OF EGYPT MOZAMBIQUE GREAT BRITAIN AND EL SALVADOR MYANMAR NORTHERN IRELAND ERITREA NAMIBIA UNITED REPUBLIC ESTONIA NEPAL OF TANZANIA ETHIOPIA NETHERLANDS UNITED STATES OF AMERICA NEW ZEALAND FIJI URUGUAY FINLAND NICARAGUA UZBEKISTAN FRANCE NIGER GABON NIGERIA VENEZUELA GEORGIA NORWAY VIETNAM GERMANY OMAN YEMEN GHANA PAKISTAN ZAMBIA GREECE PALAU ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. PROCEEDINGS SERIES MANAGEMENT AND STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL PROCEEDINGS OF A TECHNICAL MEETING HELD IN THURSO, UNITED KINGDOM, 19–22 OCTOBER 2009 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2013 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Research Reactor Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Email: [email protected] © IAEA, 2013 Printed by the IAEA in Austria March 2013 IAEA Library Cataloguing in Publication Data Management and storage of research reactor spent nuclear fuel : proceedings of a technical meeting held in Thurso, United Kingdom, 19–22 October 2009 – Vienna : International Atomic Energy Agency, 2013. p. 30 cm. – (Proceedings series, ISSN 0074-1884) STI/PUB/1592 ISBN 978-92-0-138210-8 Includes bibliographical references. 1. Spent reactor fuels – Storage – Congresses. 2. Radioactive waste management – Congresses. 3. Nuclear reactors – Safety measures – Congresses. I. International Atomic Energy Agency. II. Series: Proceedings series (International Atomic Energy Agency). IAEAL 13-00785 44 FOREWORD Responsible use of nuclear technology requires that in addition to safety, security and environmental protection, credible solutions be developed for addressing the management of research reactor fuel throughout the full fuel cycle, including its disposition after removal from the reactor core. It is clear that the end point of the research reactor fuel cycle is associated with the development of a geological repository to be used for disposition of the spent fuel assembly after it is properly conditioned or for disposition of the waste resulting from its reprocessing. Developing a geological repository for spent nuclear fuel and high level waste is not an easy task. Only a few countries have made great progress in the implementation of geological repositories, including Finland, France, Sweden and the United States of America. The technology and costs involved in developing a geological repository and maintaining it for hundreds of years make it prohibitive for most countries, especially those countries with only one or two research reactors and no nuclear power programme. Furthermore, in most countries the inventories of spent nuclear fuel and high level waste grow slowly. For these reasons, many Member States are currently deferring the decision on selecting an end point solution for their research reactor spent nuclear fuel, and it is expected that hundreds of research reactors worldwide, both operational and shutdown but not yet decommissioned, will continue with at-reactor or away-from-reactor storage of research reactor spent nuclear fuel (RRSNF) for long periods. This situation has raised concerns about the condition of the stored fuel and storage facilities, because spent fuel at both research and test reactors is being stored for longer periods than originally planned and in larger quantities. Furthermore, considering that 124 of the 240 operating research reactors and 181 of the 217 shutdown but not yet decommissioned research reactors are over 40 years old, it is understandable that concerns focus on the condition of the stored fuel, the ageing fuel storage facilities, the extension of their lifetimes and the ultimate disposition of spent fuel assemblies. To help managers of research reactors and RRSNF storage facilities deal with interim storage of spent fuel, the IAEA has developed a programme of activities to study and discuss how to safely maintain the integrity of the fuel and to improve storage conditions until a final decision on the end point is made. Within this programme, a technical meeting was organized to discuss good practices for the management and storage of RRSNF. The meeting was held during October 2009 in Thurso, United Kingdom, and was attended by experts representing organizations having proven experience in handling and storing RRSNF. The information assimilated during the meeting was collected and assembled in this publication, with the purpose of making available to managers of research reactors and managers of RRSNF storage facilities, information on current good practices on interim storage of RRSNF. The IAEA wishes to thank all those who participated in the technical meeting, as well as N. Iyer, D. Vinson, J. Lian, P. Standring and A. Soares for their contributions to the final version of the report. The IAEA officers responsible for this publication were P. Adelfang and S. Tozser of the Division of Nuclear Fuel Cycle and Waste Technology. EDITORIAL NOTE The papers in these proceedings are reproduced as submitted by the authors and have not undergone rigorous editorial review by the IAEA. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY ............................................................................................................................... 1 1. INTRODUCTION ............................................................................................................ 1 2. OPTIONS FOR RESEARCH REACTOR SPENT NUCLEAR FUEL ........................... 2 2.1. Research reactor spent nuclear fuel reprocessing ................................................... 2 2.2. Return of research reactor spent nuclear fuel to the country where it was enriched .............................................................................................
Recommended publications
  • Inventory of Rad Waste in Canada 2012.Qxd
    Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office Ottawa, Canada 2012 Inventory of Radioactive Waste in Canada March 2012 LLRWMO-01613-041-10003 CC3-1/2012 978-1-100-54191-4 Inventory of Radioactive Waste in Canada Low-Level Radioactive Waste Management Office 1900 City Park Drive, Suite 200 Ottawa, Ontario Canada K1J 1A3 Inventory of Radioactive Waste in Canada Executive Summary This report presents the inventory of radioactive waste in Canada to the end of 2010. It is intended to provide an overall review on the production, accumulation and projections of radioactive waste in Canada. The data presented in this report has been gathered from many sources including regulatory documents, published reports and supplemental information provided by the nuclear regulator, waste producers and waste management facilities. Radioactive waste has been produced in Canada since the early 1930s when the first radium mine began operating at Port Radium in the Northwest Territories. Radium was refined for medical use and uranium was later processed at Port Hope, Ontario. Research and development on the application of nuclear energy to produce electricity began in the 1940s at the Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL). At present, radioactive waste is generated in Canada from: uranium mining, milling, refining and conversion; nuclear fuel fabrication; nuclear reactor operations; nuclear research; and radioisotope manufacture and use. Radioactive waste is primarily grouped into three categories: nuclear fuel waste, low- and intermediate-level radioactive waste, and uranium mining and milling waste. In accordance with Canada’s Radioactive Waste Policy Framework, the owners of radioactive waste are responsible for the funding, organization, management and operation of long-term waste management facilities required for their waste.
    [Show full text]
  • CHAPTER 13 Reactor Safety Design and Safety Analysis Prepared by Dr
    1 CHAPTER 13 Reactor Safety Design and Safety Analysis prepared by Dr. Victor G. Snell Summary: The chapter covers safety design and safety analysis of nuclear reactors. Topics include concepts of risk, probability tools and techniques, safety criteria, design basis accidents, risk assessment, safety analysis, safety-system design, general safety policy and principles, and future trends. It makes heavy use of case studies of actual accidents both in the text and in the exercises. Table of Contents 1 Introduction ............................................................................................................................ 6 1.1 Overview ............................................................................................................................. 6 1.2 Learning Outcomes............................................................................................................. 8 1.3 Risk ...................................................................................................................................... 8 1.4 Hazards from a Nuclear Power Plant ................................................................................ 10 1.5 Types of Radiation in a Nuclear Power Plant.................................................................... 12 1.6 Effects of Radiation ........................................................................................................... 12 1.7 Sources of Radiation ........................................................................................................
    [Show full text]
  • To Read Report
    McMaster Nuclear Reactor McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 NPROL-01.01/2024 Annual Compliance Monitoring and Operational Performance 2018 Summary Data for Public Information Approved/Issued by: Christopher Heysel, P. Eng, Director Nuclear Operations & Facilities McMaster University, Nuclear Research Bldg., Room A332 Hamilton, Ontario L8S 4K1 Tel: 905 525-9140 ext. 23278 [email protected] Annual Compliance Monitoring & Operational Performance 2018 Executive Summary The McMaster Nuclear Reactor (MNR) was operated safely, securely and effectively in 2018. MNR continued to support the educational and research goals of the University throughout the year specifically in the areas of nuclear science, environmental science, medical and health physics, engineering physics, health sciences, radio‐chemistry, bio‐chemistry and radiation biology. The costs associated with the safe and secure operation and maintenance of the facility were offset through a variety of irradiation services and medical isotope production activities. Reactor availability was 79.6% with no major unplanned outages taking place during the year. There were no lost time injuries, near misses or major safety findings in 2018. Doses to workers and releases to the environment remained ALARA throughout the year. Specific radiological and environmental safety goals were met or exceeded in 2018. As part of MNR’s outreach program more than 2000 visitors toured through the facility in 2018. Many visitors were students from local high schools and universities who were given the unique experience of seeing the “blue glow” of an operating reactor core and an introduction to nuclear sciences. Major activities scheduled for 2019 will include further commissioning of beam line for the McMaster Intense Positron Beam Facility (MIPBF) and instrument installation support for the McMaster University Small Angle Neutron Scattering (SANS) facility.
    [Show full text]
  • Atomic Energy of Canada Limited BUCKLINGS of HEAVY WATER
    B Atomic Energy of Canada Limited BUCKLINGS OF HEAVY WATER MODERATED LATTICES OF ZEEP RODS by r.N. MCDONNELL and A. OKAZAKI Chofk River, Ontario September 197! AECL-3998 BUCKLINGS OF HEAVY WATER MODERATED LATTICES OF ZEEP RODS By *F.N. McDonnell and A. Okazaki Reactor Physics Branch * NRC Post-Doctorate Fellow attached to Reactor Physics Branch. ABSTRACT The bucklings of heavy water moderated lattices of ZEEP rods (3.25 cm diameter natural U metal contained in aluminum tubes) were measured by the flux mapping method in the ZED-2 reactor. The isotopic composition of trie moderator was 99.46 atom percent D2O. The bucklings, corrected for the 0.34 atom percent difference in isotopic composition, are in excellent ag.eement with earlier measurements made in the ZEEP reactor. Chalk River Nuclear Laboratories Chalk River, Ontario September, 1971 AECL-3998 Laplaciens de réseaux de barres ZEEP modérés par eau lourde par F.N. McDonnell* et A. Okazaki** •Boursier Post-Doctorat du Conseil National de Recherches détaché à la Sous-Division de Physique des réacteurs **Sous-Division de Physique des réacteurs Résumé Les iaplaciens des réseaux de barres ZEEP modérés par eau lourde (barreaux d'uranium naturel métallique ayant 3,25 cm de diamètre et gainés dans des tubes d'aluminium) ont été mesurés par la méthode du cadrage du flux dans le réacteur ZED-2. La composition isotopique du modérateur était de 99j46% atomes de D-0. Les laplaciens, corrigés pour la différence de 0,34% atomes dans la composition isotopique, sont en excellent accord avec les mesures précédentes effectuées dans le réacteur ZEEP.
    [Show full text]
  • Heu Repatriation Project
    HEU REPATRIATION PROJECT RATIONALE In April 2010, the governments of Canada and the United States (U.S.) committed to work cooperatively to repatriate spent highly- enriched uranium (HEU) fuel currently stored at the Chalk River Laboratories in Ontario to the U.S. as part of the Global Threat Reduction Initiative, a broad international effort to consolidate HEU inventories in fewer locations around the world. This initiative PROJECT BACKGROUND promotes non-proliferation This HEU is the result of two decades of nuclear fuel use at the by removing existing weapons Chalk River Laboratories for Canadian Nuclear Laboratories (CNL) grade material from Canada research reactors, the National Research Experimental (NRX) and and transferring it to the National Research Universal (NRU), and for the production of U.S., which has the capability medical isotopes in the NRU, which has benefitted generations of to reprocess it for peaceful Canadians. Returning this material to the U.S. in its existing solid purposes. In March 2012, and liquid forms ensures that this material is stored safely in a Prime Minister Harper secure highly guarded location, or is reprocessed into other forms announced that Canada and that can be used for peaceful purposes. the U.S. were expanding their efforts to return additional Alternative approaches have been carefully considered and inventories of HEU materials, repatriation provides the safest, most secure, and fastest solution including those in liquid form. for the permanent disposition of these materials, thereby eliminating a liability for future generations of Canadians. For more information on this project contact: Email: [email protected] Canadian Nuclear Laboratories 1-866-886-2325 or visit: www.cnl.ca persons who have a legitimate need to PROJECT GOAL know, such as police or emergency response To repatriate highly-enriched uranium forces.
    [Show full text]
  • Th, PU)02 BENCHMARK EXPERIMENTS in ZED-2 SENSITIVITY and UNCERTAINTY ANALYSIS OF
    TSUNAMI ANALYSIS OF (Th, PU)02 BENCHMARK EXPERIMENTS IN ZED-2 SENSITIVITY AND UNCERTAINTY ANALYSIS OF (Th, PU)02 BENCHMARK EXPERIMENTS IN ZED-2 USING TSUNAMI BY TING ZHU, B.A.Sc. A THESIS SUBMITTED TO THE DEPARTMENT OF ENGINEERING PHYSICS AND THE SCHOOL OF GRADUATE STUDIES OF MCMASTER UNIVERSITY IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ApPLIED SCIENCE © Copyright by Ting Zhu, March 2011 Master of Applied Science (2011) McMaster University (Engineering Physics) Hamilton, Ontario, Canada TITLE: Sensitivity and Uncertainty Analysis of (Th, Pu)Oz Benchmark Experiments in ZED-2 Using TSUNAMI AUTHOR: Ting Zhu Bachelor of Applied Science in Engineering Sci­ ence (Physics) University of Toronto, Toronto, Canada SUPERVISOR: Dr. Adriaan Buijs NUMBER OF PAGES: x,88 ii Abstract In 1984, the ZED-2 research reactor was used to study five (Th, Pu)Oz fuel bundles with the goal to provide both benchmark tests for future reactor code validation and experimental measurements for a possible thorium fuel cycle in CANDU. In this work, the neutronic models of these critical exper­ iments were investigated by TSUNAMI, a sensitivity and uncertainty (SjU) analysis tool, part of the SCALE6 reactor physics package from the Oak Ridge National Laboratory. TSUNAMI consists of different modules that are capable of calculating the values of keff and the uncertainties in keff due to uncertainties in the nu­ clear data. It generates energy-dependent sensitivity coefficients from which the percentage change in keff due to perturbations in nuclear data values can be determined. The calculated keff has a bias which is the difference between calculation and measurement.
    [Show full text]
  • Fuel Cycle Flexibility in CANDU P.G
    IAEA-SM-353-5P Fuel Cycle Flexibility in CANDU P.G. Boczar XA9949933 Director, Fuel and Fuel Cycle Division, AECL Chalk River Laboratories, Chalk River, Ontario, Canada No single fuel-cycle path is appropriate for all countries. Many local and global factors will affect the best strategy for an individual country. Fuel-cycle flexibility is an important factor in an ever-changing, and unpredictable world. CANDU is an evolutionary reactor, offering a custom fuel cycle to fit local requirements. Its unsurpassed fuel-cycle flexibility can accommodate the widest range of fuel-cycle options in existing CANDU stations. In the short term, the CANFLEX® bundle is nearing power reactor implementation. The demonstration irradiation of 26 bundles in the Pt. Lepreau power station in New Brunswick, Canada, started this September, and a water-CHF test will take place later this year that will confirm the improvement in thermalhydraulic performance. CANFLEX provides enhanced operating and safety performance through a reduction in peak linear element ratings, and a significant increase in critical channel power. CANFLEX will be the near-term carrier of advanced fuel cycles. While natural uranium fuel provides outstanding advantages, the use of slightly enriched uranium (SEU) in CANDU offers even lower fuel cycle costs and other potential benefits, such as uprating capability through flattening the radial channel power distribution. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. The use of SEU/RU is the first logical step from natural uranium in CANDU. For countries having LWR reactors, the ability to use low-fissile material in CANDU reactors offers a range of unique synergistic fuel cycle opportunities.
    [Show full text]
  • CMD19-H100-8.Pdf
    CMD 19-H100.8 File/dossier : 6.01.07 Date : 2019-08-30 Edocs pdf : 5983279 Oral Presentation Exposé oral Submission from Nuclear Waste Mémoire d’Action Déchets Nucléaires et Watch and Inter-Church Uranium Inter-Church Uranium Committee Committee Educational Cooperative Educational Cooperative In the Matter of À l’égard de Saskatchewan Research Council, Saskatchewan Research Council SLOWPOKE-2 Reactor Installation nucléaire SLOWPOKE-2 Request by the Saskatchewan Research Demande du Saskatchewan Research Council Council to authorize the decommissioning of afin d’autoriser le déclassement du réacteur the SLOWPOKE-2 reactor SLOWPOKE-2 Commission Public Hearing Audience publique de la Commission September 26, 2019 Le 26 septembre 2019 This page was intentionally Cette page a été intentionnellement left blank laissée en blanc Decommissioning of Saskatchewan Research Council SLOWPOKE-2 Reactor (Ref. 2019-H-100) Nuclear Waste Watch and Inter-Church Uranium Committee Educational Cooperative’s Submission to the Canadian Nuclear Safety Commission Prepared by: Jessica Karban Legal Counsel, Canadian Environmental Law Association August 30, 2019 ISBN: 978-1-77189-996-3 Publication No. 1290 Report from NWW & ICUCEC | 2 SUMMARY OF RECOMMENDATIONS Recommendation 1: In order to facilitate public participation, all Commission Member Documents (CMDs) and accompanying references should be made available on the CNSC’s website at least 60 days in advance of intervention deadlines and remain on the website for future public use. Recommendation 2: Based on our review of applicable requirements governing decommissioning in Canada, we request that the CNSC: 1. Develop a principled overall policy framework underpinning a robust, clear, and enforceable regulatory regime for the decommissioning of nuclear facilities as well as the waste that arises from nuclear and decommissioning activities; 2.
    [Show full text]
  • Tering Distributions Using MCNP Simulations of Critical Measurements and Simplified Calculation Benchmarks K.S
    International Conference on Nuclear Data for Science and Technology 2007 DOI: Assessment of evaluated (n,d) energy-angle elastic scat- tering distributions using MCNP simulations of critical measurements and simplified calculation benchmarks K.S. Kozier Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0 Abstract. Different evaluated (n,d) energy-angle elastic scattering distributions produce k-effective differences in MCNP5 simulations of critical experiments involving heavy water (D2O) of sufficient magnitude to suggest a need for new (n,d) scattering measurements and/or distributions derived from modern theoretical nuclear models, especially at neutron energies below a few MeV. The present work focuses on the small reactivity change of <1 mk that is observed in the MCNP5 D2O coolant-void-reactivity calculation bias for simulations of two pairs of critical experiments performed in the ZED-2 reactor at the Chalk River Laboratories when different nuclear data libraries are used for deuterium. The deuterium data libraries tested include ENDF/B-VII.0, ENDF/B-VI.4, JENDL-3.3 and a new evaluation, labelled Bonn-B, which is based on recent theoretical nuclear-model calculations. Comparison calculations were also performed for a simplified, two-region, spherical model having an inner, 250-cm radius, homogeneous sphere of UO2, without and with deuterium, and an outer 20-cm-thick deuterium reflector. 1 Introduction The present work focuses on the sensitivity of the ZED-2 MCNP5 CVR calculation bias to
    [Show full text]
  • Nuclear in Canada NUCLEAR ENERGY a KEY PART of CANADA’S CLEAN and LOW-CARBON ENERGY MIX Uranium Mining & Milling
    Nuclear in Canada NUCLEAR ENERGY A KEY PART OF CANADA’S CLEAN AND LOW-CARBON ENERGY MIX Uranium Mining & Milling . Nuclear electricity in Canada displaces over 50 million tonnes of GHG emissions annually. Electricity from Canadian uranium offsets more than 300 million tonnes of GHG emissions worldwide. Uranium Processing – Re ning, Conversion, and Fuel Fabrication Yellowcake is re ned at Blind River, Ontario, PELLETS to produce uranium trioxide. At Port Hope, Ontario, Nuclear Power Generation and Nuclear Science & uranium trioxide is At plants in southern Technology TUBES converted. URANIUM DIOXIDE Ontario, fuel pellets are UO2 is used to fuel CANDU loaded into tubes and U O UO URANIUM Waste Management & Long-term Management 3 8 3 nuclear reactors. assembled into fuel YUKON TRIOXIDE UO2 Port Radium YELLOWCAKE REFINING URANIUM bundles for FUEL BUNDLE Shutdown or Decommissioned Sites TRIOXIDE UF is exported for 6 CANDU reactors. UO enrichment and use Rayrock NUNAVUT 3 CONVERSION UF Inactive or Decommissioned Uranium Mines and 6 in foreign light water NORTHWEST TERRITORIES Tailings Sites URANIUM HEXAFLUORIDE reactors. 25 cents 400 kg of COAL Beaverlodge, 2.6 barrels of OIL Gunnar, Lorado NEWFOUNDLAND AND LABRADOR McClean Lake = 3 Cluff Lake FUEL PELLET Rabbit Lake of the world’s 350 m of GAS BRITISH COLUMBIA Cigar Lake 20% McArthur River production of uranium is NVERSION Key Lake QUEBEC CO mined and milled in northern FU EL ALBERTA SASKATCHEWAN MANITOBA F Saskatchewan. AB G R University of IN IC ONTARIO P.E.I. IN A Saskatchewan The uranium mining F T E IO 19 CANDU reactors at Saskatchewan industry is the largest R N TRIUMF NEW BRUNSWICK Research Council NOVA SCOTIA private employer of Gentilly-1 & -2 Whiteshell Point Lepreau 4 nuclear power generating stations Rophton NPD Laboratories Indigenous people in CANDU REACTOR Chalk River Laboratories Saskatchewan.
    [Show full text]
  • Separating Indian Military and Civilian Nuclear Facilities
    Separating Indian Military and Civilian Nuclear Facilities Institute for Science and International Security (ISIS) By David Albright and Susan Basu December 19, 2005 The agreement announced on July 18, 2005 by President George Bush and Prime Minister Manmohan Singh regarding the establishment of a U.S.-India “global partnership” will require changes to U.S. non-proliferation laws and policies and could dramatically increase nuclear and nuclear-related commerce with India. Part of this agreement is an Indian commitment to separate its civil and military nuclear programs and put declared civil facilities under international safeguards. Safeguards should apply in perpetuity, with minor, standard exceptions that do not include use in nuclear explosives or weapons. In addition, safeguarded nuclear material should not co-mingle with unsafeguarded nuclear material in any facility, unless this unsafeguarded nuclear material also comes under safeguards. This latter condition is an example of “contamination,” a key principle of safeguards. Although these conditions do not appear to have been accepted by India, they are necessary to prevent civil nuclear cooperation from benefiting India’s nuclear weapons program. To accomplish these goals, India needs to place all its nuclear facilities not directly associated with nuclear weapons production or deployment under safeguards. India has many civil nuclear facilities in this category. In addition, India should place its nuclear facilities associated with its naval nuclear fuel cycle under international safeguards. Exempting such naval-related facilities from safeguards would undermine efforts to safeguard such facilities in non-nuclear weapon states party to the Nuclear Non-Proliferation Treaty. Brazil accepted safeguards on its prototype naval reactor and its enrichment plants at Aramar dedicated to the production of naval reactor fuel.
    [Show full text]
  • The AECL Chalk River Laboratories (CRL) Was Established in 1944 In
    WM’05 Conference, February 27 – March 3, 2005, Tucson, AZ STORED LIQUID WASTE REMEDIATION PROGRAM, PHASE 1, AT CHALK RIVER LABORATORIES R.P. Denault, P. Heeney, E. Plaice, K. Schruder, Waste Remediation & Enhancement Projects Division D. Wilder, Site Engineering & Project Management Division W. Graham, Components & Systems Division AECL, Chalk River Laboratories, MS #E4 Chalk River, ON, Canada K0J 1J0 [email protected] ABSTRACT Liquid intermediate- and high-level radioactive wastes presently stored in 21 tanks at the Chalk River Laboratories are being retrieved, conditioned and consolidated into a new storage system. The Liquid Waste Transfer and Storage project is responsible for designing, constructing and commissioning the storage system, specifying and procuring retrieval and transfer equipment and developing operating, maintenance and training procedures and materials. The project has characterized the existing wastes and completed an inspection of the present storage tanks and vaults. The conceptual design has progressed to include a criticality safety assessment, a safeguards analysis, selection of retrieval and transfer technologies and conceptual design of the new storage system. The transfer and collection of wastes from these 21 tanks will be a step forward in the goal of achieving a long-term management solution for the wastes. This paper provides an overview of the development of the conceptual design, including the new storage system, the retrieval system and the transfer systems, the laboratory program that supports the blending sequence and waste conditioning and the tank and vault inspection. INTRODUCTION Atomic Energy of Canada Limited (AECL) is a Federal Crown Corporation charged with leading the development of peaceful applications of nuclear technology in Canada.
    [Show full text]