PAPER Related content - Future electricity production methods. Part Tritium resources available for fusion reactors 1: Nuclear energy Hervé Nifenecker To cite this article: M. Kovari et al 2018 Nucl. Fusion 58 026010 - European DEMO design strategy and consequences for materials G. Federici, W. Biel, M.R. Gilbert et al. - Materials-related issues in the safety and licensing of nuclear fusion facilities View the article online for updates and enhancements. N. Taylor, B. Merrill, L. Cadwallader et al. This content was downloaded from IP address 194.81.223.66 on 23/03/2018 at 14:11 IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 58 (2018) 026010 (10pp) https://doi.org/10.1088/1741-4326/aa9d25 58 Tritium resources available for fusion 2018 reactors © 2017 EURATOM M. Kovari1, M. Coleman1,2, I. Cristescu3 and R. Smith1 NUFUAU 1 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom 2 EUROfusion Consortium, Boltzmannstraße 2, 85748 Garching, Germany 3 Tritium Laboratory, Karlsruhe Institute of Technology, Karlsruhe, Germany 026010 E-mail:
[email protected] M. Kovari et al Received 11 July 2017, revised 22 November 2017 Accepted for publication 24 November 2017 Published 21 December 2017 Abstract Printed in the UK The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO NF will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology.