Notices of the American Mathematical Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein
Placing World War I in the History of Mathematics David Aubin, Catherine Goldstein To cite this version: David Aubin, Catherine Goldstein. Placing World War I in the History of Mathematics. 2013. hal- 00830121v1 HAL Id: hal-00830121 https://hal.sorbonne-universite.fr/hal-00830121v1 Preprint submitted on 4 Jun 2013 (v1), last revised 8 Jul 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Placing World War I in the History of Mathematics David Aubin and Catherine Goldstein Abstract. In the historical literature, opposite conclusions were drawn about the impact of the First World War on mathematics. In this chapter, the case is made that the war was an important event for the history of mathematics. We show that although mathematicians' experience of the war was extremely varied, its impact was decisive on the life of a great number of them. We present an overview of some uses of mathematics in war and of the development of mathematics during the war. We conclude by arguing that the war also was a crucial factor in the institutional modernization of mathematics. Les vrais adversaires, dans la guerre d'aujourd'hui, ce sont les professeurs de math´ematiques`aleur table, les physiciens et les chimistes dans leur laboratoire. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
General Index
General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d. -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY ISSU! NO. 116 OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••••••••••••••••••••••••••••••••.• 874 Program of the Meeting in Cambridge, Massachusetts •••.•.••••..•• 875 Abstracts for the Meeting- Pages 947-953 PRELIMINARY ANNOUNCEMENTS OF MEETINGS •••••••••••••••••.•• 878 AN APPEAL FOR PRESERVATION OF ARCHIVAL MATERIALS .•••••••••• 888 CAN MATHEMATICS BE SAVED? ••••••••••.••••••••..•.•••••••.. 89 0 DOCTORATES CONFERRED IN 1968-1969 ••••••••••••••.••••••.•••• 895 VISITING MATHEMATICIANS .•••••••••••••••••••••••••..•••••.. 925 ANNUAL SALARY SURVEY ••••••••••••.••••.••••.•.•.••••••.•• 933 PERSONAL ITEMS •••••••••••••••••••••••••••••...•••••••••• 936 MEMORANDA TO MEMBERS Audio Recordings of Mathematical Lectures ••••••••..•••••.•••.• 940 Travel Grants. International Congress of Mathematicians ••..•.•••••.• 940 Symposia Information Center ••••.•• o o • o ••••• o o •••• 0 •••••••• 940 Colloquium Lectures •••••••••••••••••••••••.• 0 ••••••••••• 941 Mathematical Sciences E'mployment Register .•.••••••..•. o • o ••••• 941 Retired Mathematicians ••••• 0 •••••••• 0 ••••••••••••••••• 0 •• 942 MOS Reprints .•••••• o •• o ••••••••••••••••••••••• o •••••• 942 NEWS ITEMS AND ANNOUNCEMENTS •••••. o •••••••••••••••• 877, 932, 943 ABSTRACTS PRESENTED TO THE SOCIETY •••••.••••.•.•.••..•..•• 947 RESERVATION FORM. o •••••••••••••••••••••••••••••••••••••• 1000 MEETINGS Calendar of Meetings NOTE: This Calendar lists all of the meetings which have -
Feature of the Month – January 2016 Galilaei
A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge. -
Chance, Luck and Statistics : the Science of Chance
University of Calgary PRISM: University of Calgary's Digital Repository Alberta Gambling Research Institute Alberta Gambling Research Institute 1963 Chance, luck and statistics : the science of chance Levinson, Horace C. Dover Publications, Inc. http://hdl.handle.net/1880/41334 book Downloaded from PRISM: https://prism.ucalgary.ca Chance, Luck and Statistics THE SCIENCE OF CHANCE (formerly titled: The Science of Chance) BY Horace C. Levinson, Ph. D. Dover Publications, Inc., New York Copyright @ 1939, 1950, 1963 by Horace C. Levinson All rights reserved under Pan American and International Copyright Conventions. Published in Canada by General Publishing Company, Ltd., 30 Lesmill Road, Don Mills, Toronto, Ontario. Published in the United Kingdom by Constable and Company, Ltd., 10 Orange Street, London, W.C. 2. This new Dover edition, first published in 1963. is a revised and enlarged version ot the work pub- lished by Rinehart & Company in 1950 under the former title: The Science of Chance. The first edi- tion of this work, published in 1939, was called Your Chance to Win. International Standard Rook Number: 0-486-21007-3 Libraiy of Congress Catalog Card Number: 63-3453 Manufactured in the United States of America Dover Publications, Inc. 180 Varick Street New York, N.Y. 10014 PREFACE TO DOVER EDITION THE present edition is essentially unchanged from that of 1950. There are only a few revisions that call for comment. On the other hand, the edition of 1950 contained far more extensive revisions of the first edition, which appeared in 1939 under the title Your Chance to Win. One major revision was required by the appearance in 1953 of a very important work, a life of Cardan,* a brief account of whom is given in Chapter 11. -
Dynamic Algebras: Examples, Constructions, Applications
Dynamic Algebras: Examples, Constructions, Applications Vaughan Pratt∗ Dept. of Computer Science, Stanford, CA 94305 Abstract Dynamic algebras combine the classes of Boolean (B ∨ 0 0) and regu- lar (R ∪ ; ∗) algebras into a single finitely axiomatized variety (BR 3) resembling an R-module with “scalar” multiplication 3. The basic result is that ∗ is reflexive transitive closure, contrary to the intuition that this concept should require quantifiers for its definition. Using this result we give several examples of dynamic algebras arising naturally in connection with additive functions, binary relations, state trajectories, languages, and flowcharts. The main result is that free dynamic algebras are residu- ally finite (i.e. factor as a subdirect product of finite dynamic algebras), important because finite separable dynamic algebras are isomorphic to Kripke structures. Applications include a new completeness proof for the Segerberg axiomatization of propositional dynamic logic, and yet another notion of regular algebra. Key words: Dynamic algebra, logic, program verification, regular algebra. This paper originally appeared as Technical Memo #138, Laboratory for Computer Science, MIT, July 1979, and was subsequently revised, shortened, retitled, and published as [Pra80b]. After more than a decade of armtwisting I. N´emeti and H. Andr´eka finally persuaded the author to publish TM#138 itself on the ground that it contained a substantial body of interesting material that for the sake of brevity had been deleted from the STOC-80 version. The principal changes here to TM#138 are the addition of footnotes and the sections at the end on retrospective citations and reflections. ∗This research was supported by the National Science Foundation under NSF grant no. -
Vegetative Ecology of a Montane Mire, Crater Lake National
AJ ABSTRACT OF THE THESIS OF Susan Cornelia Seyer for the degree of Master of Science in Botany and Plant Pathology presented on December 14, 1979 Title: VEGETATIVE ECOLOGY OF A MONTANE MIRE, CRATER LAKE NATIONAL PARK, OREGON Redacted for Privacy Abstract approved: Jerry F. Franklin Mires, or peat-producing ecosystems, dominated by sedges, shrubs, and brown mosses, are common features in Cascade subalpine regions, occurring where moisture accumulates in small basins or on poorly-drained slopes. Although descriptions and classifications have been developed for mire vegetation in much of the world, there is little information of even a descriptive nature for these montane mires in Oregon and Washington. This thesis reports on phytosocia- logical structure, env'ironental relations, and successional trends in one such mire in the Oregon Cascade mountains. To characterize the general phytosociological structure of the mire vegetation at Sphagnum Bog, Crater Lake National Park, quantitative species cover data were used in conjunction with a Braun-Blanquet tabular analysis and two-dimensional stand ordinations, reciprocal averaging and a Bray-Curtis polar ordination. Defined community types correspond to physiognomic types as follows: Carex rostrata (reedswamp); Eleocharis pauciflora-Carex limosa, Eleocharis pauciflora/bryophytes (low sedge fens); Carex sichensis (tall sedge fen); Vaccinium/ Aulacomnium palustre, Vaccinium occidentala/Carex sitchensis (shrub thickets; Alnus incana/Brachythacium sp. and Salix barclayi (marginal carrs).Phases were defined when appropriate. A vegetation map was made to illustrate the locations and extent of the variouscommunities. Comparisons with other montane mires in thearea determined that the physiognomic units defined are repeatable when appropriate habitat conditions are present, and that they usually includemany of the same characteristic species, the dominant mosses being particularly constant. -
A 1 Case-PR/ }*Rciofft.;Is Report
.A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash). -
Sky and Telescope
SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history. -
On Families of Mutually Exclusive Sets
ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g .