1 1 Jouko Väänänen How complicated can structures be? NAW 5/9 nr. 2 June 2008 117 Jouko Väänänen University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam The Netherlands
[email protected] How complicated can structures be? Is there a measure of how ’close’ non-isomorphic mathematical structures are? Jouko functions f : N → N endowed with the topolo- Väänänen, professor of logic at the Universities of Amsterdam and Helsinki, shows how con- gy of pointwise convergence, where N is given temporary logic, in particular set theory and model theory, provides a vehicle for a meaningful the discrete topology. discussion of this question. As the journey proceeds, we accelerate to higher and higher We can now consider the orbit of an arbi- cardinalities, so fasten your seatbelts. trary countable structure under all permuta- tions of N and ask how complex this set is By a structure we mean a set endowed with a eyes of the difficult uncountable structures. in the topological space N. If the orbit is a finite number of relations, functions and con- New ideas are needed here and a lot of work closed set in this topology, we should think of stants. Examples of structures are groups, lies ahead. Finally we tie the uncountable the structure as an uncomplicated one. This fields, ordered sets and graphs. Such struc- case to stability theory, a recent trend in mod- is because the orbit being closed means, in tures can have great complexity and indeed el theory. It turns out that stability theory and view of the definition of the topology, that the this is a good reason to concentrate on the the topological approach proposed here give finite parts of the structure completely deter- less complicated ones and to try to make similar suggestions as to what is complicated mine the whole structure, as is easily seen to some sense of them.