Development of PAH Databases
Total Page:16
File Type:pdf, Size:1020Kb
Development of PAH databases Christine Joblin, Hassan Sabbah, Jean-Michel Glorian Odile Cœur-Joly, (Thierry Louge) Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] – CNRS Giacomo Mulas, (Andrea Saba) INAF, Osservatorio Astronomico di Cagliari IRAP, Toulouse Seminar OVGSO Toulouse, 19/10/2018 1 Outline • The astrophysical context – The AIBs and the PAH model – I.dentification of cosmic PAHs – S.tability of cosmic PAHs – O.rigin of cosmic PAHs • The cosmic PAH experimental database – Scheme – Development of the O.rigin block • The Cagliari PAH theoretical database – Description – Implementation in VAMDC • Perspectives 2 Cosmic carbonaceous molecules Coronene (C24H12 (C60 (C2H2 Phenylalanine (C9H11NO2 3 The Aromatic Infrared Bands (AIBs) ] ] ] ] ++ + [Ar [Ar ] ] + ] ] ] ] ++ ++ [Ne [S [Ne Infrared Space Spitzer Space Observatory Telescope ESA; 1995-1998 NASA; 2003-2009 2 2 H 2 2 2 2 H 2 2 H H AKARI James Webb Space Telescope ISO SWS spectra JAXA; 2006-2011 NASA; 2019-2023? Vertratete et al. 2001, A&A 372, 981 4 PAHs in the galactic dust cycle Adapted from http://www.nrao.edu/pr/2006/gbtmolecules/ Bill Saxton, NRAO/AUI/NSF 5 The AIBs à photochemical evolution PAH clusters? VSGs NGC 7023 NW PDR PAH0 VSGs PAH0 PAH+ UV processing PAH+ 7 9 11 13 15 Wavelength (μm) Graphene? + C60 C60 Rapacioli, Joblin, Boissel, 2005, A&A 429, 193 Berné, Joblin Deville, et al. 2007, , A&A 469, 575 Berné, Mulas, Joblin, 2013, A&A 550, L4 Berné & Tielens 2012, PNAS 109, 401 6 7 8 9 10 11 Wavelength (μm) 6 I.dentification of cosmic PAHs 7 The richness of the AIB spectra Peeters et al., 2004, Astrophysics of Dust vol 309, p141 NGC 7027 EvolveD star Orion Bar Massive star forming region 8 Anharmonic vibrational spectroscopy of PAHs The ESPOIRS setup on the Nanograin Platform (IRAP) AnharmoniCaOs code Mulas et al., 2018, JCP 149, 144102 1186.6 cm-1 373 K 0.25 1184.1 8.4 µm 473 K 2.0 ) 573 K r 4 K -1 8.4 µm 0.33mg e 1183.6 cm (ν49) 0.20 673 K b 100 K 1181.7 m 200 K u n e 1.5 300 K e c 1181.3 v 400 K n 0.15 a a w 500 K b 1180.8 * r l 600 K o o s m 1.0 b 0.10 / A m k ( y t 0.05 i s 0.5 n e t n 0.00 I 1200 1190 1180 1170 1160 1150 0.0 -1 9 Wavenumber (cm ) 1200 1195 1190 1185 1180 1175 1170 1165 1160 Wavenumber (cm-1) • First discovered in 1922: Longest unsolved problem in astrophysical spectroscopy! • Of interstellar origin - ubiquitous carrier(s) - very stable • Currently > 300 known DIBs (Narrow: 1-2 Å to Broad: 20 Å) • DIBs fall at constant wavelengths in the range 400-1800 nm • Spectral fingerprint of (large?) molecules in space 10 A possible candidate for the main diffuse interstellar band: one photoproduct of 1-Methylpyrene ? Main DIB at 4430 Å 1- Methylene pyrene + UV (Ly α) à photo product, possible carrier for indicated DIBs from matrix spectra. Léger A., D’Hendecourt L., & Défourneau D. (1995), A&A 293, L53 11 The PIRENEA set-up for astrochemistry 2015 Nanograin Platform (IRAP) 12 + Spectroscopy of m/z=215 (C17H11 ) in the visible PIRENEA - Linewidth ~110 cm-1 Parent a) + m/z=216 Generation of fragment b) m/z=215 Action spectroscopy m/z=215 à 213, 189 c) Rapacioli et al., 2015, J. Phys. Chem. A 119, 12845 13 S.tability of cosmic PAHs 14 Model of the VUV processing of interstellar PAHs Montillaud, Joblin, Toublanc, 2013, A&A 552, id.A15 Species modeled: NC between 24 and 96 Charge state Hydrogenation state Internal energy C H 24 12 C H C54H18 66 20 C H hν 96 24 Processes: PAH + PAH + + H PAH( +) + H h PAH( +) + H ν PAH + + e- 2 PAH PAH + + e- PAH + H Realistic astrophysical conditions : eg. NGC 7023 NW FUV - Tg – ntot – nH – nH2 – ne Meudon PDR code (Le Petit et al. 2006, ApJS) 15 Interaction of an isolated PAH with VUV photons + - Ionization + e VUV photon IP, Yion (σion), Ke Photodissociation + H, H2 Ethres, BR, Ed, kdiss Recurrent fluorescence Radiative relaxation IR cooling 16 Interaction of an isolated PAH with VUV photons Campaigns at VUV synchrotron beamlines (SOLEIL, SLS) using available setups e.g. West et al. 2018, Phys.Chem.Chem.Phys. 20,7195 e.g. Zhen et al. 2016, Astrophys. J. 822, 113 Rodriguez Castillo et al. 2018, I.J.M.S. 429, 189 PIRENEA experiments µs ν h ZKE ions hot electron TOF detector TOF Imaging target Imaging 17 e.g. Montillaud et al. 2013, A&A 552, id.A15 O.rigin of cosmic PAHs 18 Cosmic dust in the laboratory Projects RTRA STAE (2013-2016) and Nanocosmos (2014-2020) Meteorites Natural dust Stardust Machine Plasma reactors (ICMM, Madrid) (LAPLACE) Dust lab. analogues Laser vaporisation source (IRAP/LCAR) Dust lab. analogues AROMA molecular analyzer (IRAP/LCAR) Molecular component of dust 19 PAH distribution in the Murchison meteorite by AROMA Sabbah et al., 2017, Astrophys. J. 843, id. 34 20 Cn and PAHs in the Almahata Sitta meteorite by AROMA Sabbah et al., in prep.; collaboration P. Jenniskens (SETI Institute - ARC) 21 Meteorite samples: distribution of species (DBE) Double Bond Equivalent = C – H/2 + 1 40 40 Murchison 0.90 Almahata Sitta #04 0.90 35 0.75 35 0.75 0.60 0.60 0.45 30 30 0.45 0.30 0.30 0.15 25 0.0 25 0.15 0.0 20 20 DBE DBE 15 15 10 10 C clusters 5 5 Polynes Aromatics upper limit PAHs 0 0 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 C C number 22 Cosmic PAH experimental database Cosmic PAH Analogues Database Idenficaon Origin Stability SPECTROSCOPY MASS ANALYSIS FRAGMENTATION AcQon spectra PAH, Cn anD other CnHy species in PAH+ anD relateD species in ion complex soliD samples (natural, Branching raos traps reactors) Dissociaon rates UV-vis-IR AROMA setup PAH+ anD relateD species (for proDucts in most cases only PIRENEA/PIRENEA2 setups Mass spectra anD iDenQficaon chemical formula) (in most cases only chemical formula) VUV synchrotron (SOLEIL, SLS) Direct spectroscopy PIRENEA/PIRENEA2 setups (MPD) PAH neutrals anD relateD species AROMA setup (CID) IR low/high temperatures ESPOIRS setup 23 Cosmic PAH experimental database - Status Experimental database: “Cosmic PAH analogues” Ø First concept in 2014 (T. Louge) but used technology was not appropriate Ø Revised concept in 2017/2018 Ø 04/2018-07/2018: Development of the mass analysis part (Student project in OVGSO: E. Charbonnel) 24 Cosmic PAH database: mass analysis H. Sabbah, E. Charbonnel, J.-M. Glorian Search data page 25 Cosmic PAH database: mass analysis Data display 26 Cosmic PAH database: mass analysis Set filters before data retrieval 27 Cosmic PAH database: mass analysis Spectrum display 28 Cosmic PAH database: mass analysis Insert data- extraction from the template Excel file 29 Theoretical spectral database of PAHs (Cagliari/ Toulouse) 2006/2007: development of the database Malloci, Joblin, Mulas, Chem. Phys. 332 (2007) 353 http://astrochemistry.oa-cagliari.inaf.it/database/ 30 31 Virtual Atomic Molecular Data Center http://www.vamdc.org/ 32 VAMDC consortium (1) 33 VAMDC consortium (2) 34 VAMDC consortium (3) 35 VAMDC architecture 36 Implementation of the PAH theoretical database in VAMDC Ø 2008-2013: participation to the European infrastructure project VAMDC. Development of the XSAMS format for PAHs (Giacomo, Christine, Aude) Ø 2013- : participation to the VAMDC consortium • Interface of the theoretical PAH database with the VAMDC portal (minimum set of data). • Installation of the database mirror in Toulouse (Tarbes) 37 VAMDC portal: query interface https://portal.vamdc.eu/vamdc_portal/ home.seam 38 VAMDC portal: query interface https://portal.vamdc.eu/ vamdc_portal/home.seam à Retrieve xsams (xml) file containing all information and accessible by code query à Because of the format, code query will not be affected by any update of the database web interface à Citation of original work is included (not only citation to the database) 39 VAMDC portal: query interface Added values for general users and data producers à Retrieve xml file containing all information and accessible by code query à Because of the format, code query will not be affected by any update of the database web interface à Citation of original work is included (not only citation to the database) à Provide DoI associated with the query; contain a link to the query and the results (reproducibility) and list of original work Added values and Constrains for database holders and data producers à Increase use of the database and original work (publicity) à Strict protocol about data management (reproducibility of queries) à Data curation (maintained and validated) à The database structure should take into account dictionaries for queries and XSAMS schema for answers 40 Perspectives • Theoretical PAH database - Giacomo is the only current contributor and maintainer - Main difficulty is to develop tools to ingest data in the VAMDC compliant database • Tool for Nwchem data à ground-state general properties (geometry, energy, rot. cts, IP, … ) + harmonic vibrational analysis • For Gaussian, partially working tool, further development pending • For Octopus, nothing done yet. Codes are open source (sourceforge). Anybody can contribute. https://sourceforge.net/projects/qchitool/ à 4-6 months to develop and implement each tool of a web application developer with a minimum background in molecular physics/ spectroscopy 41 Perspectives • Cosmic PAH database – Origin block - First block: mass spectrometry is the only one with a database structure thanks to one internship of OVGSO. - Testing without modification is on going (scientists; Hassan first; Nanocosmos team) - Upgrade towards a public version requires support from a web interface engineer (6 months) - Development of the VAMDC node: possible technically but need resources.