Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois U.S. Department of the Interior U.S. Geological Survey Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois By P.C. Mills (U.S. Geological Survey), J.E. Nazimek (U.S. Geological Survey), K.J. Halford (U.S. Geological Survey), and D.J. Yeskis (U.S. Environmental Protection Agency) Water-Resources Investigations Report 01-4100 In cooperation with the U.S. Environmental Protection Agency Illinois Environmental Protection Agency Urbana, Illinois 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 221 N. Broadway Avenue Box 25286 Urbana, IL 61801 Denver, CO 80225-0286 CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 2 Purpose and Scope....................................................................................................................................................... 6 Previous Investigations ................................................................................................................................................ 6 Description of Study Area ........................................................................................................................................... 9 Methods of Investigation ............................................................................................................................................. 9 Acknowledgments ....................................................................................................................................................... 12 Hydrogeology ........................................................................................................................................................................ 12 Physiography and Drainage......................................................................................................................................... 12 Geology ....................................................................................................................................................................... 17 Lithology and Stratigraphy................................................................................................................................ 17 Fractures and Porosity ....................................................................................................................................... 30 Hydrology.................................................................................................................................................................... 32 Precipitation and Streamflow ............................................................................................................................ 32 Aquifers and Confining Units............................................................................................................................ 33 Hydraulic Properties.......................................................................................................................................... 39 Recharge and Ground-Water Withdrawals ........................................................................................................ 42 Ground-Water Levels and Response to Withdrawals ........................................................................................ 46 Ground-Water Flow ........................................................................................................................................... 51 Ground-Water Quality ....................................................................................................................................... 57 Simulation of Ground-Water Flow ........................................................................................................................................ 62 Model Design .............................................................................................................................................................. 63 Model Calibration........................................................................................................................................................ 72 Sensitivity Analysis ..................................................................................................................................................... 83 Model and Data Limitations........................................................................................................................................ 85 Summary................................................................................................................................................................................ 89 References Cited.................................................................................................................................................................... 91 Appendix 1. Water levels in selected streams and wells in Belvidere, Illinois, 1993–99 ..................................................... 97 Appendix 2. Field-determined characteristics of ground-water quality at selected wells in Belvidere, Illinois, 1998–99 ................................................................................................................................................................... 99 Appendix 3. Concentrations of metals, cyanide, and tritium in ground water at selected wells in Belvidere, Illinois,1998–99....................................................................................................................................................... 100 Appendix 4. Concentrations of volatile organic compounds detected in ground water at selected wells in Belvidere, Illinois, 1998–99 .................................................................................................................................... 102 Contents III FIGURES 1. Maps showing the study area in the vicinity of Belvidere, Illinois: (A) hazardous-waste-disposal and industrial sites, municipal water-supply wells, selected private wells, and lines of section A-A´, B-B´, and C-C´, (B) sites of surface-geophysical surveys and lines of section D-D´, E-E´, and F-F´, and (C) sites of surface-water-level and streamflow measurement ................................................................................... 3 2. Diagram showing classification of (A) rock-stratigraphic and hydrogeologic units and (B) detailed stratigraphy of units of Quaternary age in the vicinity of Belvidere, Illinois ............................................................. 7 3. Map showing shaded relief (A) and contours (B) of land-surface topography in the vicinity of Belvidere, Illinois ..... 13 4. Map showing geology and topography at the surface of selected bedrock units: (A) stratigraphic units that compose the bedrock surface, (B) topography of the bedrock surface, (C) shaded relief of the bedrock surface, and (D) topography of the St. Peter Sandstone surface in the vicinity of Belvidere, Illinois ....................... 14 5-11. Diagrams showing: 5. Hydrogeologic section A-A´ through the vicinity of Belvidere, Illinois................................................................. 18 6. Hydrogeologic section B-B´ through the vicinity of Belvidere, Illinois ................................................................. 19 7. Hydrogeologic section C-C´ through the vicinity of Belvidere, Illinois ................................................................. 20 8. Hydrogeologic section D-D´ through the vicinity of Belvidere, Illinois................................................................. 21 9. Hydrogeologic section E-E´ through the vicinity of Belvidere, Illinois.................................................................. 22 10. Hydrogeologic section F-F´ through Belvidere, Illinois, showing rock-stratigraphic units and principal intervals of ground-water flow in the Galena-Platteville aquifer, as indicated by vertical distribution of horizontal hydraulic conductivity, natural-gamma activity, and secondary porosity....................................... 23 11. Diagram of an acoustic-televiewer log showing secondary-porosity features in municipal well BMW2, Belvidere, Illinois........................................................................................................................................................ 27 12. Map showing generalized distribution of unconsolidated deposits in the vicinity of Belvidere, Illinois.......................28 13. Graphs showing streamflow in the Kishwaukee River at Belvidere, Illinois: (A) hydrographs for water years 1993 and 1999, and (B) flow duration for water years 1940–2000................................................................... 35 14. Maps showing potentiometric levels and horizontal-flow directions in the (A) glacial drift and (B) Galena- Platteville aquifers underlying
Recommended publications
  • Preliminary Geological Feasibility Report
    R. L. LANGENHEfM, JR. EGN 111 DEPT. GEOL. UNIV. ILLINOIS 234 N.H. B., 1301 W. GREEN ST. URBANA, ILLINOIS 61801 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J. P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer Maquoketa Group Galena-Platteville Groups Illinois Department of Energy and Natural Resources ENVIRONMENTAL GEOLOGY NOTES 111 STATE GEOLOGICAL SURVEY DIVISION 1985 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J.P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 ENVIRONMENTAL GEOLOGY NOTES 111 1985 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologicalgeotec1 1 1 kemp 1 INTRODUCTION 1 Superconducting Super Collider 1 Proposed Site in Illinois 2 Geologic and Hydrogeologic Factors 3 REGIONAL GEOLOGIC SETTING 5 Sources of Data 5 Geologic Framework 6 GEOLOGIC FRAMEWORK OF THE ILLINOIS SITE 11 General 1 Bedrock 12 Cambrian System o Ordovician System o Silurian System o Pennsylvanian System Bedrock Cross Sections 18 Bedrock Topography 19 Glacial Drift and Surficial Deposits 21 Drift Thickness o Classification, Distribution, and Description of the Drift o Banner Formation o Glasford Formation
    [Show full text]
  • Bedrock Geology of Franklin Grove Quadrangle
    STATEMAP Franklin Grove-BG Bedrock Geology of Franklin Grove Quadrangle Lee County, Illinois Franck Delpomdor and Joseph Devera 2020 615 East Peabody Drive Champaign, Illinois 61820-6918 (217) 244-2414 http://www.isgs.illinois.edu © 2020 University of Illinois Board of Trustees. All rights reserved. For permission information, contact the Illinois State Geological Survey. Introduction Previous work The first geological features of Lee County were illustrated Geographic location and geomorphological framework very generally on early statewide geologic maps at scale The Franklin Grove 7.5-minute Quadrangle is located in 1/500,000 (Worthen 1875; Weller 1906). Stratigraphy and north-central Illinois in the north-central part of Lee County, structural geology investigations in the Franklin Grove area Illinois, about 32 miles southwest of Rockford (Winnebago include those by Cady (1920), Leighton (1922), Templeton County), 45 miles east of Illinois-Iowa border, 50 miles and Saxby (1947), Templeton and Willman (1952, 1963), south of the Illinois-Wisconsin border, and 90 miles west Kolata and Buschbach (1976), Willman and Kolata (1978), of Chicago (Cook and DuPage Counties). Map coverage and Kolata et al. (1978). In addition, a map showing the bed- extends to the east from the Dixon East Quadrangle and rock geology of Lee County, including the Franklin Grove south of the Daysville Quadrangle. The quadrangle cov- Quadrangle, was published by McGarry (1999). Geologic ers approximately a 55 square mile area that is bounded by features were generalized in the Geologic Map of Illinois 41°45’00” and 41°52’30” North latitude and 89°15’00” and at scale 1/500,000 (Kolata 2005).
    [Show full text]
  • The Sandwich Fault Zone of Northern Illinois
    505 THE SANDWICH FAULT ZONE OF NORTHERN ILLINOIS Dennis R. Kolata T. C. Buschbach Janis D. Treworgy STATE OF ILLINOIS, DEPARTMENT OF REGISTRATION AND EDUCATION CIRCULAR 505 Illinois State Geological Survey, Urbana, Illinois 1978 Jack A. Simon, Chief COVER PHOTO: Faulted and shattered Silurian dolomite in the Meyer Material Company quarry (Vick's Pit) located within the Sandwich Fault Zone about six miles southwest of Joliet, Will County, Illinois. A major fault with approximately 100 feet of displacement is marked by the white line. Rocks of the Wilhelmi Formation on the left are upthrown in juxtaposition with the Joliet Formation on the right. Numerous, small high-angle faults and joints can be seen in the highwall. The faulted Silurian dolomite is truncated to a flat surface and is covered by approximately 20 feet of the Wisconsinan Yorkville Till Member. Kolata, Dennis R. The Sandwich Fault Zone of northern Illinois/ by Dennis R. Kolata, T. C. Busch- bach and Janis D. Treworgy. Urbana: Illinois State Geological Survey, 1978. 26 p. illus. 28 cm. (ISGS Circular 505) References: p. 26. 1. Faults (Geology). I. Buschbach, Thomas C. II. Treworgy, Janis D. III. Title. THE SANDWICH FAULT ZONE OF NORTHERN ILLINOIS Dennis R. Kolata T. C. Buschbach Janis D. Treworgy ILLINOIS STATE GEOLOGICAL SURVEY Urbana, Illinois 61801 Jack A. Simon, Chief Circular 505, 1978 . 21 CONTENTS FIGURES 1 Prominent structural features and area of study. 2 2. Geologic map of the Sandwich Fault Zone and adjacent areas. 4 3. Generalized stratigraphic section in the area of the Sandwich Fault Zone. 5 4. Structure of the top of the Franconia Formation Abstract 1 Introduction 2 along the Sandwich Fault Zone.
    [Show full text]
  • Paleozoic Lithostratigraphic Nomenclature for Minnesota
    MINNESOTA GEOLOGICAL SURVEY PRISCILLA C. GREW, Director PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA John H. Mossier Report of Investigations 36 ISSN 0076-9177 UNIVERSITY OF MINNESOTA Saint Paul - 1987 PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA CONTENTS Abstract. Structural and sedimentological framework • Cambrian System • 2 Mt. Simon Sandstone. 2 Eau Claire Formation • 6 Galesville Sandstone • 8 Ironton Sandstone. 9 Franconia Formation. 9 St. Lawrence Formation. 11 Jordan Standstone. 12 Ordovician System. 13 Prairie du Chien Group. 14 Oneota Dolomite. 14 Shakopee Formation. 15 St. Peter Sandstone. 17 Glenwood Formation. 17 Platteville Formation. 18 Decorah Shale. 19 Galena Group • 22 Cummings ville Formation. 22 Prosser Limestone. 23 Stewartville Formation • 24 Dubuque Formation. 24 Maquoketa Formation. 25 Devonian System • 25 Spillville Formation • 26 Wapsipinicon Formation 26 Cedar Valley Formation • 26 Northwestern Minnesota. 28 Winnipeg Formation • 28 Red River Formation. 29 Acknowledgments • 30 References cited. 30 Appendix--Principal gamma logs used to construct the composite gamma log illustrated on Plate 1. 36 ILLUSTRATIONS Plate 1 • Paleozoic lithostratigraphic nomenclature for Minnesota • .in pocket Figure 1. Paleogeographic maps of southeastern Minnesota • 3 2. Map showing locations of outcrops, type sections, and cores, southeastern t1innesota • 4 3. Upper Cambrian stratigraphic nomenclature 7 iii Figure 4. Lower Ordovician stratigraphic nomenclature • • • • 14 5. Upper Ordovician stratigraphic nomenclature 20 6. Middle Devonian stratigraphic nomenclature. • • . • • 27 7. Map showing locations of cores and cuttings in northwestern Minnesota • • • • • • • • • • • • • • • • • • 29 TABLE Table 1. Representative cores in Upper Cambrian formations •••••• 5 The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national orgin, handicap, age, veteran status, or sexual orientation.
    [Show full text]
  • Goodhue Bedrock Layout
    Prepared and Published with the Support of COUNTY ATLAS SERIES THE BOARD OF COMMISSIONERS, GOODHUE COUNTY, MINNESOTA, AND ATLAS C-12, PART A MINNESOTA GEOLOGICAL SURVEY THE MINNESOTA DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATERS Plate 2—Bedrock Geology D.L. Southwick, Director M STRATIGRAPHIC COLUMN ISSISSIPPI RIVER EXPLANATION FOR STRATIGRAPHIC COLUMN Hydrostratigraphic Group, Character Natural – LITHOLOGY Formation, Lithology DAKOTA CO DAKOTA Csf Gamma Log Miller, R.T., and Delin, G.N., 1993, Field observations, preliminary Compo- Perme- REFERENCES CITED Member in feet Oolites Series nent ability Increasing count Thickness model analysis, and aquifer thermal efficiency: U.S. Geological Survey LIMESTONE System or Alexander, C.E., 1990, Anion analysis of selected wells and springs: Map Symbol Low High G Glauconite Oronoco dye trace study: Report to Olmsted County, 101 p. Site Professional Paper 1530-A, 55 p. Prosser Ogp 70 report on file at the Minnesota Pollution Control Agency. Mossler, J.H., 1987, Paleozoic lithostratigraphic nomenclature for DOLOSTONE Ph Phosphate pellets Limestone Alexander, E.C., Jr., Huberty, B.J., and Anderson, K.J., 1991, Final Minnesota: Minnesota Geological Survey Report of Investigations Cummings- SANDY Algal domes; stromatolites Ogc 70- 36, 36 p., 1 pl. (folded insert). Group ville report for Olmsted County dye trace investigations of the Oronoco Galena 75 Runkel, A.C., 1996a, Geologic investigations applicable to ground-water T. 114 N. T. 114 N. Burrows Formation sanitary landfill: Prepared by Donohue and Associates for Olmsted SANDSTONE County. Site report on file at the Minnesota Pollution Control Agency. management, Rochester metropolitan area, Minnesota: Minnesota –Cig North BEDROCK GEOLOGY 60- Lake Pebbles Decorah Shale Od Barr Engineering Co., 1996, Dakota County groundwater model summary Geological Survey Open-File Report 96-1, 33 p.; 4 oversize pls.
    [Show full text]
  • Number 6 GEOLOGICAL and NATURAL HISTORY SURVEY
    ~.. J X Information Circular Number 6 1 University of Wisconsin GEOLOGICAL AND NATURAL HISTORY SURVEY George F. Hanson, State Geologist and Director CAMBRO-ORDOVICIAN STRATIGRAPHY OF SOUTHWEST WISCONSIN by M. E. Ostrom Assistant State Geologist Prepared as a Guidebook for the 29th Annual Tri-State Field Conference WISCONSIN October 9 and 10, 1965 Information Circular Number 6 University of Wisconsin GEOLOGICAL AND NATURAL HISTORY SURVEY George F. Hanson, State Geologist and Director CAMBRO-ORDOVICIAN STRATIGRAPHY OF SOUTHWEST WISCONSIN by M. E. Ostrom Assistant State Geologist Prepared as a Guidebook for the 29th Annual Tri-State Field Conference WISCONSIN October 9 and 10, 1965 Available from University of Wisconsin, Geological and Natural History Survey, 170 Science Hall, Madison, Wis. 53706. Price - 759. 13. Vertical Scale GENERALIZED CROSS SECTION feet Decorah Fm. 200 OF STOPS Platteville Fm. SINNIPEE' GP. 50 3. 12. Glenwood Mbr. I .-- - - , Tonli Mbr. i}(': 4. Sf. Peter Fm. 100 ... --- ~-, ,,--------- >-:'-;;.." ~,,,- "..,.. - __ "'SHAKOPEE FM,~ , " -s~ i - ....... _ _ _, ...... '--,~,- - ~'.~ I 50 2. PRAIRIE DU CHIEN GP. 10. II. " I o W 5. Oneota Fm. I 9. I Van Ose r Mbr. Jordan Fm. ---- ---- Norwalk Mbr. ---- ~ I...uui Mbr. - - - v Black Earlh Mbr. st LO'<'lrence frn. 1""":<.'-"1 IYluzomonie Mbr. - - --- ---- ..----- - - _ .·ZlI_ - - R@no Mbr. Franconia Fm. 8. 7. ~ Jomah Mbr. Birkmose Mbr. IranIan Mbr_ Mbr. - DRESBACH GP. Generalized Geologic Column for Southwestern Wisconsin Ordovician System Cincinnatian Series Maquoketa Shale Formation Champlainian Series Sinnipee Group Galena Dolomite Formation Dubuque Member Stewartville Member Prosser Member Decorah Shale Formation Ion Member Guttenberg Member Spechts Ferry Member Platteville Limestone Formation Quimby's Mill Member MacGregor Member Pecatonica Member 1 Ancell Group St.
    [Show full text]
  • Mchenry County Water Resources 2020-9-4 SK-DS 1 MCHENRY
    MCHENRY COUNTY WATER RESOURCES Approximately 10,000 to 20,000 years ago glaciers from the most recent period of glaciation (Wisconsin glaciation) retreated from McHenry County leaving a water-rich tapestry of lakes, rivers, streams and wetlands. As soon as the landscape became more hospitable, Native Americans became regular visitors to McHenry County. Archaeologists have uncovered artifacts that verify the presence of Native Americans in McHenry County extending back 12,000 years before present (BP). Large and small wetlands likely provided the most productive and easily harvested food resources, including game and vegetation, for the earliest people 10. For thousands of years Native Americans of many tribes and cultures migrated through and occupied McHenry County, relying on its abundant natural resources. In the 1800’s, expanding European settlement forced Native American occupants from McHenry County and many man-made changes were implemented that degraded the health of water resources. Changes included converting prairie, wetland and woodland to agriculture; draining or filling wetlands and channelizing streams to increase agricultural land; and grading or paving over land for residential and commercial development. These changes accelerated as new technologies were introduced and urban development expanded into the countryside. Historically, the native vegetation in McHenry County consisted predominantly of deep rooted plant species that held soils in place, protected soil from erosion, intercepted and stored rainfall, and sequestered organic carbon in the soil. The canopy and roots of trees in woodlands, another historically dominant plant community in the county, were also capable of intercepting, storing and transpiring rainfall. The canopy and interconnected root systems of the native vegetation acted as a sponge capable of absorbing, storing, and transpiring tremendous volumes of water, thereby reducing the potential for flooding and promoting the infiltration of groundwater.
    [Show full text]
  • Study of Mined Storage Caverns
    ORNL/SUB-75/64509 STUDY OF MINED STORAGE CAVERNS James H. Cobbs Enyinecring Tulsa, Oklahoma June, 1975 s SIOIICE V ability. pfjpT ! 7'-is This report was prepared by James H. Cobbs Engineering under Purchase Order Subcontract 78X-64509V with Union Carbide Corporation, Nuclear Division. The subcontract was adminis- tered by Oak Ridge National Laboratory v/ ' ' ."- . ,-r • OFFICE ,OF WASTE ISOLATION . i . '' . : L iui.-un - \P'A I, K RIDGE. TENN'ES.SEE* .!»•». • > v... prepared tor the U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION under U.S. GOVERNMENT Contract W-7405 ong 26 This informal document contains information which is pre- liminary and may be fragmentary or of limited scope. The assumptions, views, and conclusions expressed in this docu- ment are those of the author and are not to be interpreted as those of Union Carbide Corporation, Nuclear Division, or USERDA f IS UNLIMITED — owl Isoa- os/m sos STUDY OF MINED STORAGE CAVERNS prepared for QH10H CARBIDE MPORftTIOK Uak Ridge, Tennessee fhia icpoft jtxt fif;»!fvl afl aumini l w k ffxinurffd by ifif Umled Slaiei ftmiiuntni. u Ntith1M o Iht Uniled nor the UniffU Mjim I ner^y Rtttiith md Dtvlupmrnt A.limnuiNii,>n nor anf o( thfu e'npki)fe«t, no» an> of ttifir confraitor*k . »ul«t>ntuttu», fvf thcu employ «et, tnake» Jti» wittiMy, e»pr*<» or implied, or juumei any lejul toabilrty <» leipun^fljtj rorlhf JciUfai.),»<,fnplftcnc« or u*rulnc» of my tnfaimatiur. arParam, prudjil »r pmcrn duJuird. or tepteKnti thai U» w>utd not mCnnp pnvjttly t>»ncd JAMES H. GOBBS ENGINEERING Tulsa, Oklahoma j 1 Kl'JU i! 'T 13 UNLIMITED STUDY OF MINED STORAGE CAVERNS H.
    [Show full text]
  • Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin
    National Water Availability and Use Pilot Program Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin Scientific Investigations Report 2009–5060 U.S. Department of the Interior U.S. Geological Survey Cover image: Three-dimensional rendering of surficial topography and hydrogeologic layers beneath the Lake Michigan Basin. (Image by David Lampe, U.S. Geological Survey.) Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin By David C. Lampe National Water Availability and Use Pilot Program Scientific Investigations Report 2009–5060 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Lampe, D.C., 2009, Hydrogeologic framework of bedrock units and initial salinity distribution for a simulation of ground- water flow for the Lake Michigan Basin: U.S.
    [Show full text]
  • Download Final Program (PDF)
    Meeting Sponsors Single Barrel Eastern Unconventional Oil and Gas Symposium Small Batch AAPG Division of Professional Affairs Straight Bourbon RS Energy LLC TGS Geophysical Pittsburgh Geological AAPG Energy Pittsburgh Association Society Minerals Division of Petroleum Geologists Mash Eastern Section American Association of Petroleum Geologists 45th Annual Meeting Lexington, Kentucky September 24–28, 2016 Program with Abstracts Hosted by The Geological Society of Kentucky Kentucky Geological Survey University of Kentucky Cover Photo: Newly filled bourbon barrels waiting to be stacked and aged in the rickhouse at Woodford Reserve Distillery, Versailles, Kentucky. Photo by Ashley Bandy, hydrogeologist, University of Kentucky. Contents Mayor’s Welcome Letter ............................................................................................................................1 Welcome .......................................................................................................................................................2 2016 Organizing Committee .........................................................................................................2 Eastern Section AAPG Officers ....................................................................................................2 Geological Society of Kentucky Officers ....................................................................................2 Kentucky Geological Survey ........................................................................................................2
    [Show full text]
  • Three-Dimensional Geologic Mapping
    source Grove 1 ----~136 ~-!!!!!!!!!\.. t""""-. IL ~L I \TU SCOla ....W ' Quarry Bulletin Ib6-" 2niH--~ I W" George"H:"Ryan, Governor ! I Department lof Natural Brent Manntng, ~um'ecw, r::......-----j ILLINOIS ~TATE GEO William W. ~ hilts, Chief --- - ..-.-~ Three-dimensional Geologic Mapping: A Pilot Program for Resource and Environmental Assessment in the Villa Grove Quadrangle, Douglas County, Illinois Zakaria Lasemi and Richard C. Berg, Editors Bulletin 106 2001 George H. Ryan, Governor Department of Natural Resources Brent Manning, Director ILLINOIS STATE GEOLOGICAL SURVEY William W. Shilts, Chief Natural Resources Building 615 East Peabody Drive Champaign, IL 61820-6964 Home page: http://www.isgs.uiuc.edu/ Contents Acknowledgments Foreword Introduction 1. The Villa Grove Quadrangle Mapping Project . 3 Richard C. Berg Methodology 2. Geologic Database . 9 Alison B. Lecouris 3. Geographic Information System and Computer Modeling: Support, Methodology, and Applications to Geologic Mapping .. .. .. .. ........................................... 12 Curtis C. Abert 4. Remote Sensing Inputs to Geologic Mapping .... .. ......... .. ....... ............. 16 Donald E. Luman Basic Mapping 5. Introduction to Basic Bedrock and Quarternary Mapping . .. ........... ... ... .............. 23 Richard C. Berg and Zakaria Lasemi 6. Bedrock Cross Sections . .. ... ........................................ 24 Michael L. Sargent 7. Geology of the Silurian Rocks .... ........ ............... .. ...... ... ... ... 31 Donald G. Mikulic and Joanne Kluessendorf 8. Devonian and Mississippian Rocks: Stratigraphy and Depositional History ... .... ... ..... ... ...... 35 Zakaria Lasemi 9. Silurian-Devonian Rocks: Biostratigraphy . .. 41 Rodney D. Norby and Curtis R. Klug 10. Pennsylvanian Rocks: Stratigraphy . 44 C. Pius Weibel and Philip J. DeMaris, with contribution by Russel A. Peppers 11. Quaternary Geology. 50 Ardith K. Hansel, Richard C. Berg, and Curtis C. Abert 12. Drift Thickness and Bedrock Topography. ...... ... ..... ...... ........ ... 60 C.
    [Show full text]
  • City of Harvard Comprehensive Plan APPENDIX B: Existing Conditions Report
    City of Harvard Comprehensive Plan APPENDIX B: Existing Conditions Report April 2015 Acknowledgements Funding Acknowledgement This project was supported through the Chicago Metropolitan Agency for Planning’s (CMAP) Local Technical Assistance (LTA) program, which is funded by the Federal Highway Administration (FHWA), Federal Transit Administration (FTA), U.S. Department of Housing and Urban Development (HUD), Illinois Department of Transportation (IDOT), and the Chicago Community Trust. The Metropolitan Mayors Caucus (MMC) and CMAP would like to thank these funders for their support for this project. Unless otherwise specified, all photos are by CMAP staff. 2 Table of Contents Introduction 4 Housing and Population 41 Regional Context 9 Economic Development 56 Previous Plans 13 Transportation 69 Community Engagement 18 Natural Environment 89 Governance and Community Services 25 Looking Forward 112 Land Use and Development 31 3 3 1. Introduction The City of Harvard has decided to update its comprehensive plan, which will define the vision of the City’s future and the steps needed to achieve that vision. Having an accurate understanding of the existing conditions in the City is necessary in order to develop an appropriate and effective comprehensive plan that addresses the issues and concerns of the community. Why Does Harvard Need a Comprehensive Plan? The history of the City of Harvard begins with its rich agricultural lands and the connection the railroad provided to the larger markets in the Chicago region. Responding to the demands of local farmers as well as the railroad, manufacturing industries took root and the community grew rapidly. Harvard continues to boast a small-town feel nestled in among farm fields and open spaces that is quite distinct from other places in the region.
    [Show full text]