Preliminary Geological Feasibility Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Printable Version of the Geology and Why It Matters Story
Geology and Why it Matters This story was made with Esri's Story Map Journal. Read the interactive version on the web at http://arcg.is/qrG8W. The geology, landforms and land features are extremely important components of watersheds. They influence water quality, hydrology and watershed resiliency. Every watershed has critical areas where water interacts with and mobilizes contaminants, including non-point and point source contributions to surface water bodies. Where and how nutrients, bacteria and/or pesticides are mobilized to reach surface water can be better understood through a careful study of subsurface hydrology, or hydrogeology, which, according to the Iowa Geological and Water Survey Bureau, “allows better identification for sources, pathways and delivery points for groundwater and contaminants transported through the watershed’s subsurface geological plumbing system.” Diagram courtesy of Iowa DNR Iowa Geological Survey The highly developed karst topography and highly permeable bedrock layers of the Upper Iowa River increase the depth from which actively circulating groundwater contributes to stream flows, making an understanding of the hydrogeology even more important. Fortunately, the Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River watershed in 2011. The project “provides information on the subsurface part of the watersheds, which is necessary for evaluating the vulnerability of groundwater to nonpoint-source contamination, the groundwater contributions to surface water contamination, and for targeting best management practices for water quality improvements.” The map on the right shows the surface elevation of bedrock in the state of Iowa and the Upper Iowa River Watershed. -
Impurity Effects in Thermal Regelation
Soft Matter View Article Online PAPER View Journal | View Issue Impurity effects in thermal regelation a ab Cite this: Soft Matter, 2020, Navaneeth K. Marath and J. S. Wettlaufer * 16, 5886 When a particle is placed in a material with a lower bulk melting temperature, intermolecular forces can lead to the existence of a ‘‘premelted’’ liquid film of the lower melting temperature material. Despite the system being below the melting temperatures of both solids, the liquid film is a consequence of thermodynamic equilibrium, controlled by intermolecular, ionic and other interactions. An imposed Received 30th March 2020, temperature gradient drives the translation of the particle by a process of melting and refreezing known as Accepted 17th May 2020 ‘‘thermal regelation’’. We calculate the rate of regelation of spherical particles surrounded by premelted DOI: 10.1039/d0sm00558d films that contain ionic impurities. The impurities enhance the rate of motion thereby influencing the dynamics of single particles and distributions of particles, which we describe in addition to the rsc.li/soft-matter-journal consequences in natural and technological settings. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction translational velocity and displacement of the particle, when it is subjected to a temperature gradient. Lastly, we develop Premelted liquid films can separate the surface of a solid from the theory to understand the combined effects of thermal a foreign substrate at temperatures below the solid’s bulk regelation and diffusion on the particle motion. In Section 3, melting temperature. The solid melts against the substrate in we describe the displacement of particles of different sizes order to minimize the free energy of the solid–liquid–substrate and impurity concentrations for various temperature gradients. -
Physics, Chapter 17: the Phases of Matter
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 17: The Phases of Matter Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 17: The Phases of Matter" (1958). Robert Katz Publications. 165. https://digitalcommons.unl.edu/physicskatz/165 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 17 The Phases of Matter 17-1 Phases of a Substance A substance which has a definite chemical composition can exist in one or more phases, such as the vapor phase, the liquid phase, or the solid phase. When two or more such phases are in equilibrium at any given temperature and pressure, there are always surfaces of separation between the two phases. In the solid phase a pure substance generally exhibits a well-defined crystal structure in which the atoms or molecules of the substance are arranged in a repetitive lattice. Many substances are known to exist in several different solid phases at different conditions of temperature and pressure. These solid phases differ in their crystal structure. Thus ice is known to have six different solid phases, while sulphur has four different solid phases. -
Chapter 3: Supporting PPT Slides
ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India Phase Diagrams 1 © Sameer Khandekar ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India Increasing the temperature isobarically T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures numerical values are for water. 2 © Sameer Khandekar ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India Temperature - Volume diagram 3 © Sameer Khandekar ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India Pressure – Volume diagram The pressure is gradually reduced by removing the weights 4 © Sameer Khandekar ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India P-v-T surfaces Remembering: (i) The State Postulate: The state of a simple compressible substance is fixed by any two independent, intensive properties and (ii) Any equation with two independent variables in the form z = z (x, y) represents a surface 5 © Sameer Khandekar ESO201A Department of Mechanical Engineering Thermodynamics Indian Institute of Technology Kanpur Instructor: Dr. Sameer Khandekar Kanpur 208016 Tel: 7038; e-mail: [email protected] India P-v-T Surface of a substance that expands on freezing. -
Bedrock Geology of Dixon West Quadrangle
STATEMAP Dixon West-BG Bedrock Geology of Dixon West Quadrangle Lee County, Illinois Dennis R. Kolata 2013 Prairie Research Institute ILLINOIS STATE GEOLOGICAL SURVEY 615 East Peabody Drive Champaign, Illinois 61820-6964 (217) 244-2414 http://www.isgs.illinois.edu © 2013 University of Illinois Board of Trustees. All rights reserved. For permission information, contact the Illinois State Geological Survey. INTRODUCTION STRATIGRAPHY The Dixon West Quadrangle is situated in northwestern Lee Bedrock in the Dixon West Quadrangle consists largely of County, Illinois. It encompasses the western parts of the city Ordovician dolomite and shale and a small area of Silurian of Dixon, which is the largest town in the county. Most of the dolomite in the southwestern part of the quadrangle. It has land is used for agricultural purposes but a moderate amount been standard practice of the ISGS during the past few of residential and commercial developments are present. decades to follow the Ordovician classification and nomen- clature proposed by Templeton and Willman (1963). Their The quadrangle lies in the Rock River Hill Country of the stratigraphy was followed in large part by Willman and Ko- Central Lowlands Province. The topography formed primar- lata (1978) who made minor revisions to some members and ily by deposition of glacial sediments (clay, silt, sand, and documented the presence of nine widespread K-bentonite gravel) in a till plain which was subsequently dissected by beds. These stratigraphic investigations have shown that the erosional processes of the Rock River and its tributaries. Upper Ordovician carbonate succession consists of distinc- Bedrock in the Dixon West Quadrangle is largely concealed tive rock units that can be traced over wide areas of the beneath the till plain except for local exposures along the riv- Midcontinent U.S. -
The Ideal Gas
LectureLecture 2222 Equations of state. The ideal gas. Kinetic model of a gas. Phase Diagram State variables State variables for a system: they characterize the system macroscopically at a given time. • Pressure • Temperature • Volume • Mass or moles Important: a system is in a thermal state that can be described by these variables when ALL the system has uniform pressure, temperature, etc. Example: Gas in a tube whose ends are kept at different temperature is NOT in a thermal state. Equation of state The equation of state relates the state variables. Can be obtained: • Empirically • From statistical mechanics The ideal gas An ideal gas is one whose molecules • are very small (point-like) • do not interact with one another This is very true for any gas that is not in an “extreme” situation. The gas is NOT ideal if we have: • high density • high pressure • near transition to liquid (or solid) • molecules are very large Mole of a gass A mole (mol) is defined as the number of grams of a substance that is numerically equal to the molecular mass of the substance: 1 mol of H2 has a mass of 2 g (2*1 protons + 2*0 neutrons per moleule) 1 mol of Ne has a mass of 20 g (1*10 protons + 1*10 neutrons per atom) 1 mol of O2 has a mass of 32 g (2*8 protons + 2*8 neutrons per molecule) 1 mol of C has a mass of 12 g (1*6 proton + 1*6 neutrons per atom) 1 mol of CO2 has a mass of 44 (1*6+2*8) protons + (1*6+2*8) neutrons per molecule mass Number of moles: n = molecular mass Q: How do I know the molecular mass? A: Look at the periodic table. -
Investigating How the Role of Pressure Is Misunderstood in the Process of Regelation of Water*
POCZYTAJMY PO ANGIELSKU Investigating how the role of pressure is misunderstood in the process of regelation of water*. Karim Daw Egypt Student of Vienna International School Vienna Nov. 2008* Introduction: The process of melting due to pressure and then re-freezing when pressure is reduced is commonly called regelation. There is a substantial amount of physics that is not clearly explained. The word "regelation" means re - freezing and does not imply that pressure plays any role in it. Congelare means “to freeze” in Italian. This essay reports on investigation to what extent pressure is responsible for regelation of water**. Aspects of thermal physics will come into play in this investigation, mainly, the effects of pressure on melting point. This is because observing the effects of pressure on a body involves understanding the transport of energy and where and how it is being transferred in the form of heat. The guiding research question is: To what extent does pressure play a role in the regelation of water. The process of regelation: When a substance turns from a solid to a liquid, it usually undergoes a change in volume as well. Most substances expand when this phase change takes place and some contract. In the case of water, it contracts when changing from solid to liquid. This is well expressed by Le Chatelier's** principles: "If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change." When there is an application of pressure on ice, the system counteracts by lowering the pressure on it in some way. -
Appendix 1. State Geologic Maps Bibliography
18 The State Geologic Map Compilation (SGMC) Geodatabase of the Conterminous United States Appendix 1. State Geologic Maps Bibliography The citations presented here are for the paper versions of the State geologic maps with a U.S. Geological Survey (USGS) National Geologic Map Database (NGMDB) URL link provided for convenience. The sources for all data in the State Geologic Map Compilation (SGMC) are the original USGS Preliminary Integrated Geologic Map Databases (PIGMD) unless otherwise noted. Please see the PIGMD citation provided for more detailed geologic map source information. Alabama (AL)—Scale 1:250,000 Osbourne, W.E., Szabo, M.W., Neathery, T.L., and Copeland, C.W., Jr., 1988, Geologic map of Alabama—Northeast sheet: Geological Survey of Alabama Special Map 220, scale 1:250,000. Szabo, M.W., and Copeland, C.W., Jr., 1988, Geologic map of Alabama—Southeast sheet: Geological Survey of Alabama Special Map 220, scale 1:250,000. Szabo, M.W., and Copeland, C.W., Jr., 1988, Geologic map of Alabama—Southwest sheet: Geological Survey of Alabama Special Map 220, scale 1:250,000. Szabo, M.W., Osbourne, W.E., and Copeland, C.W., Jr., 1988, Geologic map of Alabama—Northwest sheet: Geological Survey of Alabama Special Map 220, scale 1:250,000. NGMDB—Available at https://ngmdb.usgs.gov/Prodesc/proddesc_55859.htm. PIGMD—Available at https://pubs.usgs.gov/of/2005/1323/#AL. Arizona (AZ)—scale 1:1,000,000 Richard, S.M., Reynolds, S.J., Spencer, J.E., and Pearthree, P.A., 2000, Geologic map of Arizona: Arizona Geological Survey Map 35, 1 sheet, scale 1:1,000,000. -
Memorial to Harold Bowen Willman 1901-1984 JACK A
Memorial to Harold Bowen Willman 1901-1984 JACK A. SIMON and ELWOOD ATHERTON Illinois State Geological Survey, Champaign, Illinois 61820 Harold Bowen (“Bo”) Willman, died on July 4, 1984, in Urbana, Illinois, after a brief illness. He was an emi nent geologist performing basic and applied research for nearly 60 years in stratigraphy, structure, mineral deposits, and utilization of strata ranging from the Cambrian through the Pleistocene Systems primarily in Illinois and other midwestern states. He had a far- reaching impact on knowledge of the Ordovician, Silurian, Pennsylvanian, and Pleistocene Systems. Harold Bowen Willman, the son of Ernest Floyd and Gay Bowen Willman, was born July 30, 1901, in Newcastle, Indiana. He grew up and graduated from high school in Hartford City, Indiana. Bo went to the University of Illinois with an eye on courses in jour nalism, but he took a course in geology, and the expe rience changed his career. He received a B.A. in 1926, an M.A. in 1928, and a Ph.D. in 1931, all in geology. In the summer of 1924, he worked in British Columbia as a field assistant to Francis P. Shepard. In the summer of 1925, he worked for the Kentucky Geological Survey. In the summers of 1926 and 1927, he worked at the Illinois Geological Survey (ISGS), and was a graduate teaching assistant in geology at the University of Illinois. In 1928, Bo was appointed to the part-time staff at the Illinois State Geological Survey. Initially he worked with J. Marvin Weller in the Areal Geology and Paleontology Division during the summer, and with Gilbert H. -
Throughout Its Hundred-Year History, the Illinois State Geological Survey
Throughout its hundred-year history, the Illinois State Geological Survey has provided accurate, relevant and objective earth science information for the benefit of the state’s citizens and institution s. Revealing thePast, Discovering theFuture Story By Cheryl K. Nimz Photos By Joel M. Dexter Working from a field lab coal research uring a century of change, the geologist’s trained eye, some - station used from 1941 to 1945, geolo- some things remain the same. times by climbing a rock exposure, gists examined samples collected from Understanding Illinois geolo - striking a rock hammer against an rotary drill holes (above). Core samples gy has always required getting outcrop or quarry wall, or following from a recent coalbed methane drilling dirty, sunburnt, cold or wet. evidence along a stream bed. project near Olney were labeled and DRocks, soils and every earth material described by scientists. in between need to be examined by May 2005 Outdoor Illinois / 15 Geologists must sometimes use computer applications were needed Great Depression, wars and oil large rigs to drill far beneath the sur - to manage ever-increasing amounts embargos, to name a few—affected face, removing cores of earth materi - of data, assist interpretations and research directions. als for study, or even descend into share information. Also, the methods Finally, collaboration with other sinkholes, caves and mines. Then it Illinois State Geological Survey individuals and agencies has is back to the laboratory to examine (ISGS) geologists use, and the pro - become increasingly important. the materials, record their properties jects they work on, are refined and Many kinds of experts are needed to and interpret them. -
Geochemistry of the Cambrian-Ordovician Aquifer System in the Northern Midwest, United States
GEOCHEMISTRY OF THE CAMBRIAN-ORDOVICIAN AQUIFER SYSTEM IN THE NORTHERN MIDWEST, UNITED STATES U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 14SD5-D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL B , OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in- Books of the U.S. -
Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois
U.S. Department of the Interior U.S. Geological Survey Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois By P.C. Mills (U.S. Geological Survey), J.E. Nazimek (U.S. Geological Survey), K.J. Halford (U.S. Geological Survey), and D.J. Yeskis (U.S. Environmental Protection Agency) Water-Resources Investigations Report 01-4100 In cooperation with the U.S. Environmental Protection Agency Illinois Environmental Protection Agency Urbana, Illinois 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 221 N. Broadway Avenue Box 25286 Urbana, IL 61801 Denver, CO 80225-0286 CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 2 Purpose and Scope....................................................................................................................................................... 6