Study of Mined Storage Caverns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bedrock Geology of Dodge County, Wisconsin (Wisconsin Geological
MAP 508 • 2021 Bedrock geology of Dodge County, Wisconsin DODGE COUNTY Esther K. Stewart 88°30' 88°45' 88°37'30" 88°52'30" 6 EXPLANATION OF MAP UNITS Tunnel City Group, undivided (Furongian; 0–155 ft) FOND DU LAC CO 630 40 89°0' 6 ! 6 20 ! 10 !! ! ! A W ! ! 1100 W ! GREEN LAKE CO ! ! ! WW ! ! ! ! DG-92 ! ! ! 1100 B W! Includes Lone Rock and Mazomanie Formations. These formations are both DG-53 W ! «49 ! CORRELATION OF MAP UNITS !! ! 7 ! !W ! ! 43°37'30" R16E _tc EL709 DG-1205 R15E W R14E R15E DG-24 W! ! 1 Quaternary ! 980 ! W W 1 ! ! ! 6 DG-34 6 _ ! 1 R17E Os Lake 1 R16E 6 interbedded and laterally discontinuous and therefore cannot be mapped 1 6 W ! ! 1100 !! 175 940 Waupun DG-51 ! 980 « Oa ! R13E 6 Emily R14E W ! 43°37'30" ! ! ! 41 ¤151 B «49 ! ! ! ! Opc ! Drew «68 ! W ! East ! ! ! individually at this scale in Dodge County. Overlies Elk Mound Group across KW313 940 ! ! ! ! ! ! 940 ! W B ! ! - ! ! W ! ! ! ! ! ! !! Waupun ! W ! Undifferentiated sediment ! ! W! B 000m Cr W! ! º Libby Cr ! 3 INTRUSIVE SUPRACRUSTAL 3 1020 ! ! Waupun ! DG-37 W ! ! º 1020 a sharp contact. W ! 50 50 N ! ! KS450 ! ! ! IG300 ! B B Airport ! RO703 ! ! Brownsville ! ! ! ! ! ! 1060 ! ROCKS W ! ! ROCKS Unconsolidated sediments deposited by modern and glacial processes. 940 ° ! Qu ! W Br Rock SQ463 B ! Pink, gray, white, and green; coarse- to fine-grained; moderately to poorly 980 B River B B ! ! KT383 ! ! Generally 20–60 feet (ft) thick; ranges from absent where bedrock crops ! !! ! ! ! ! ! Su Lower Silurian ° ! ! ! ! ! 940 860 ! ! ! ! ! ! ! ! ! ! sorted; glauconitic sandstone, siltstone, and mudstone with variable W ! B B B ! ! ! 980 ! ! ! 780 ! Kummel !! out to more than 200 ft thick in preglacial bedrock valleys. -
Lexington Quadrangle Virginia
COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 Couuowwoer,rn op Vtncrwre DopenrupNr op Puncnesrs exo Supptv Rrculroxn 1960 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond. Virginia MenvrN M. SurHnnr,eNn, Director BOARD Vrcron W. Stnwenr, Petersburg, Chairtnan G. Ar,vrn MessnNnunc, Hampton, Viee'Chairman A. Pr,urvrnr BmnNn, Orange C. S. Cenrnn, Bristol ANpnpw A. Fenr,pv, Danville WonrnrrvcroN FauLKNEn, Glasgow SvoNpv F. Slter,r,, Roanoke EnwrN H. Wrr,r,, Richmond Wrr,r,renr P. Wooor,nv. Norfolk CONTENTS Pece Abstract. '"*i"#:;;;;: . : ::: , : ::.:::::::::..::::::. :.::.::::::: ::,r Z Geography 8 Purpose. 4 Previous Work. Present Work and Acknowledgements. 5 Geologic Formations. 6 Introduction. 6 Precambrian System. 6 Pedlar formation 6 Precambrian and Cambrian Systems. 6 Discussion. 6 Swift Run formation 8 Catoctin greenstone. I Unieoiformation...... ......... I Hampton(Harpers)formation. .......... I Erwin (Antietam) quartzite. Cambrian System . I0 Shady (Tomstown) dolomite 10 Rome (Waynesboro) formation.... ll Elbrook formation. 12 Conococheague limestone. l3 Ordovician System. ......., 14 Chepultepeclimestone. .......... 14 Beekmantown formatron. 14 New Market limestone. 15 Lincolnshire limestone. 16 Edinburg formation. 16 Martinsburg shale... 17 SilurianSystem. ......... 18 Clinchsandstone..... .......... 18 Clinton formation. -
Preliminary Geological Feasibility Report
R. L. LANGENHEfM, JR. EGN 111 DEPT. GEOL. UNIV. ILLINOIS 234 N.H. B., 1301 W. GREEN ST. URBANA, ILLINOIS 61801 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J. P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer Maquoketa Group Galena-Platteville Groups Illinois Department of Energy and Natural Resources ENVIRONMENTAL GEOLOGY NOTES 111 STATE GEOLOGICAL SURVEY DIVISION 1985 Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois Preliminary Geological Feasibility Report J.P. Kempton, R.C. Vaiden, D.R. Kolata P.B. DuMontelle, M.M. Killey and R.A. Bauer ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820 ENVIRONMENTAL GEOLOGY NOTES 111 1985 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/geologicalgeotec1 1 1 kemp 1 INTRODUCTION 1 Superconducting Super Collider 1 Proposed Site in Illinois 2 Geologic and Hydrogeologic Factors 3 REGIONAL GEOLOGIC SETTING 5 Sources of Data 5 Geologic Framework 6 GEOLOGIC FRAMEWORK OF THE ILLINOIS SITE 11 General 1 Bedrock 12 Cambrian System o Ordovician System o Silurian System o Pennsylvanian System Bedrock Cross Sections 18 Bedrock Topography 19 Glacial Drift and Surficial Deposits 21 Drift Thickness o Classification, Distribution, and Description of the Drift o Banner Formation o Glasford Formation -
Oxygen Isotopic Composition of Ferric Oxides from Recent Soil, Hydrologic, and Marine Environments
Geochimica et Cosmochimica Acta, Vol. 64, No. 13, pp. 2221–2231, 2000 Copyright © 2000 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/00 $20.00 ϩ .00 PII S0016-7037(00)00351-3 Oxygen isotopic composition of ferric oxides from recent soil, hydrologic, and marine environments 1, 2 3 HUIMING BAO, *PAUL L. KOCH, and MARK H. THIEMENS 1Department of Chemistry and Biochemistry, Mail Code 0356, 9500 Gilman Drive, University of California San Diego, La Jolla, CA 92093, USA 2Department of Earth Sciences, University of California, Santa Cruz, CA 95064, USA 3Department of Chemistry and Biochemistry, Mail Code 0356, University of California San Diego, La Jolla, CA 92093, USA (Received September 27, 1999; accepted in revised form January 24, 2000) Abstract—Low-temperature synthesis experiments on ferric oxide–water systems have resulted in disparate oxygen isotope fractionation–temperature (␣-T) curves. In this study, recent ferric oxides, mostly goethites of Holocene age, were collected and analyzed from a variety of modern soil, stream, and marine environments, where formation temperature and the oxygen isotopic composition (␦18O) of the water from which ferric oxides precipitated can be independently measured or estimated. This allows comparison of experimental ␣-T relationships with data from natural systems. Selective dissolution methods were refined for the pretreatment of fine-grained minerals in order to obtain reliable ␦18O values for pure and crystalline ferric oxides. The difference (⌬␦18O) between the ␦18O value of goethite and that of local mean meteoric water ranges from Ϫ1.5 to ϩ6.3‰ for soil goethites from New Jersey, Indiana, Michigan, Iowa, South Dakota, and Taiwan. -
EXPLANATORY TEXT for GEOLOGIC MAP of NORTH CAROLINA By
North Carolina State Library t ( f jleigh NORTH CAROLINA DEPARTMENT OF CONSERVATION AND DEVELOPMENT William P. Saunders, Director %*fo _ DIVISION OF MINERAL RESOURCES Jasper L. Stuckey, State Geologist BULLETIN NUMBER 71 EXPLANATORY TEXT FOR GEOLOGIC MAP OF NORTH CAROLINA By Jasper L. Stuckey and Stephen G. Conrad RALEIGH 1958 Norffe Carolir* St** NORTH CAROLINA DEPARTMENT OF CONSERVATION AND DEVELOPMENT William P. Saunders, Director DIVISION OF MINERAL RESOURCES Jasper L. Stuckey, State Geologist BULLETIN NUMBER 71 EXPLANATORY TEXT FOR GEOLOGIC MAP OF NORTH CAROLINA By Jasper L. Stuckey and Stephen G. Conrad RALEIGH 1958 MEMBERS OF THE BOARD OF CONSERVATION AND DEVELOPMENT GOVERNOR LUTHER H. HODGES, Chairman Raleigh MILES J. SMITH, First Vice Chairman Salisbury WALTER J. DAMTOFT, Second Vice Chairman Canton CHARLES S. ALLEN ..__„___ Durham W. B. AUSTIN Jefferson F. J. BOLING Siler City H. C. BUCHAN, JR North Wilkesboro SCROOP W. ENLOE, JR Spruce Pine VOIT GILMORE Southern Pines R. M. HANES Winston-Salem LEO H. HARVEY Kinston CHARLES H. JENKINS - __..._...Ahoskie AMOS R. KEARNS High Point H. C. KENNETT Durham R.W.MARTIN Raleigh CECIL MORRIS Atlantic HUGH M. MORTON Wilmington W. EUGENE SIMMONS Tarboro T.MAX WATSON Spindale LETTER OF TRANSMITTAL Raleigh, North Carolina February 4, 1958 To His Excellency, HONORABLE LUTHER H. HODGES Governor of North Carolina Sir: I have the honor to submit herewith manuscript for publication as Bulletin No. 71, "Explanatory Text for Geologic Map of North Carolina". This text is an essential part of the new geologic map of North Carolina. The new geologic map and this explanatory text contain a summary of the best information pres- ently available on the geology of North Carolina. -
U.S. Geological Survey Bulletin 1839-G, H
Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H i i i I ' i ' i ' X- »-v l^,:^ Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia By ROBERT T. RYDER Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia By CHRYSA M. CULLATHER Chapters G and H are issued as a single volume and are not available separately U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data (revised for vol. G-H) Evoluation of sedimentary basins Appalachian basin. (U.S. Geological Survey bulletin ; 1839 A-D, G-H) Includes bibliographies. Supt. of Docs. no.:19.3:1839-G Contents: Horses in fensters of the Pulaski thrust sheet, southwestern Virginia / by Arthur P. Schultz [etc.] Stratigraphic framework of Cam brian and Ordovician rocks in central Appalachian basin from Morrow County, Ohio, to Pendleton County, West Virginia / by Robert T. -
Petrology and Diagenesis of the Cyclic Maquoketa Formation (Upper Ordovician) Pike County, Missouri
Scholars' Mine Masters Theses Student Theses and Dissertations 1970 Petrology and diagenesis of the cyclic Maquoketa Formation (Upper Ordovician) Pike County, Missouri Edwin Carl Kettenbrink Jr. Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geology Commons Department: Recommended Citation Kettenbrink, Edwin Carl Jr., "Petrology and diagenesis of the cyclic Maquoketa Formation (Upper Ordovician) Pike County, Missouri" (1970). Masters Theses. 5514. https://scholarsmine.mst.edu/masters_theses/5514 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. .,!) l PETROLOGY AND DIAGENESIS OF THE CYCLIC MAQUOKETA FORMATION (UPPER ORDOVICIAN) PIKE COUNTY, MISSOURI BY EDWIN CARL KETTENBRINK, JR., 1944- A THESIS submitted to the faculty of UNIVERSITY OF MISSOURI - ROLLA in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY Rolla, Missouri 1970 T2532 231 pages c. I Approved by ~ (advisor) ~lo/ ii ABSTRACT The Maquoketa Formation (Upper Ordovician-Cincinnatian Series) has been extensively studied for over one hundred years, but a petrographic study of its cyclic lithologies has been neglected. The following six distinct Maquoketa lithologies have been recognized in this study in Pike County, Missouri& 1) phosphatic biosparite, 2) phos phorite, 3) micrite-microsparite, 4) dolomitic shale, 5) dolomitic marlstone, and 6) dolomitic quartz siltstone. Three cycle types are present in the Maquoketa. They are expressed as thin beds (1-20 inches) of alternating micrite-shale, micrite-marlstone, and shale-siltstone. -
Paleozoic Stratigraphic Nomenclature for Wisconsin (Wisconsin
UNIVERSITY EXTENSION The University of Wisconsin Geological and Natural History Survey Information Circular Number 8 Paleozoic Stratigraphic Nomenclature For Wisconsin By Meredith E. Ostrom"'" INTRODUCTION The Paleozoic stratigraphic nomenclature shown in the Oronto a Precambrian age and selected the basal contact column is a part of a broad program of the Wisconsin at the top of the uppermost volcanic bed. It is now known Geological and Natural History Survey to re-examine the that the Oronto is unconformable with older rocks in some Paleozoic rocks of Wisconsin and is a response to the needs areas as for example at Fond du Lac, Minnesota, where of geologists, hydrologists and the mineral industry. The the Outer Conglomerate and Nonesuch Shale are missing column was preceded by studies of pre-Cincinnatian cyclical and the younger Freda Sandstone rests on the Thompson sedimentation in the upper Mississippi valley area (Ostrom, Slate (Raasch, 1950; Goldich et ai, 1961). An unconformity 1964), Cambro-Ordovician stratigraphy of southwestern at the upper contact in the Upper Peninsula of Michigan Wisconsin (Ostrom, 1965) and Cambrian stratigraphy in has been postulated by Hamblin (1961) and in northwestern western Wisconsin (Ostrom, 1966). Wisconsin wlle're Atwater and Clement (1935) describe un A major problem of correlation is the tracing of outcrop conformities between flat-lying quartz sandstone (either formations into the subsurface. Outcrop definitions of Mt. Simon, Bayfield, or Hinckley) and older westward formations based chiefly on paleontology can rarely, if dipping Keweenawan volcanics and arkosic sandstone. ever, be extended into the subsurface of Wisconsin because From the above data it would appear that arkosic fossils are usually scarce or absent and their fragments cari rocks of the Oronto Group are unconformable with both seldom be recognized in drill cuttings. -
Upper Ordovician) at Wequiock Creek, Eastern Wisconsin
~rnooij~~~mij~rnoo~ ~oorn~rn~rn~~ rnoo~~rnrn~rn~~ Number 35 September, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois REVIEW COMMITTEE FOR THIS CONTRIBUTION: T.N. Bayer, Winona State College University, Winona Minnesota M.E. Ostrom, Wisconsin Geological Survey, Madison, Wisconsin Peter Sheehan, Milwaukee Public Museum· ISBN :0-89326-016-4 Milwaukee Public Museum Press Published by the Order of the Board of Trustees Milwaukee Public Museum Accepted for publication July, 1980 Stratigraphy and Paleontology of the Maquoketa Group (Upper Ordovician) at Wequiock Creek, Eastern Wisconsin Paul A. Sivon Department of Geology University of Illinois Urbana, Illinois Abstract: The Maquoketa Group (Upper Ordovician) is poorly exposed in eastern Wisconsin. The most extensive exposure is found along Wequiock Creek, about 10 kilometers north of Green Bay. There the selection includes a small part of the upper Scales Shale and good exposures of the Fort Atkinson Limestone and Brainard Shale. The exposed Scales Shale is 2.4 m of clay, uniform in appearance and containing no apparent fossils. Limestone and dolomite dominate the 3.9 m thick Fort Atkinson Limestone. The carbonate beds alternate with layers of dolomitic shale that contain little to no fauna. The shales represent times of peak terrigenous clastic deposition in a quiet water environment. The car- bonates are predominantly biogenic dolomite and biomicrite. Biotic succession within single carbonate beds includes replacement of a strophomenid-Lepidocyclus dominated bottom community by a trep- ostome bryozoan-Plaesiomys-Lepidocyclus dominated community. Transported echinoderm and cryptostome bryozoan biocalcarenites are common. -
Annual Meeting 2002
Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S. -
Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois
U.S. Department of the Interior U.S. Geological Survey Hydrogeology and Simulation of Ground-Water Flow in the Aquifers Underlying Belvidere, Illinois By P.C. Mills (U.S. Geological Survey), J.E. Nazimek (U.S. Geological Survey), K.J. Halford (U.S. Geological Survey), and D.J. Yeskis (U.S. Environmental Protection Agency) Water-Resources Investigations Report 01-4100 In cooperation with the U.S. Environmental Protection Agency Illinois Environmental Protection Agency Urbana, Illinois 2002 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 221 N. Broadway Avenue Box 25286 Urbana, IL 61801 Denver, CO 80225-0286 CONTENTS Abstract.................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................... 2 Purpose and Scope....................................................................................................................................................... 6 -
Bedrock Geology of Franklin Grove Quadrangle
STATEMAP Franklin Grove-BG Bedrock Geology of Franklin Grove Quadrangle Lee County, Illinois Franck Delpomdor and Joseph Devera 2020 615 East Peabody Drive Champaign, Illinois 61820-6918 (217) 244-2414 http://www.isgs.illinois.edu © 2020 University of Illinois Board of Trustees. All rights reserved. For permission information, contact the Illinois State Geological Survey. Introduction Previous work The first geological features of Lee County were illustrated Geographic location and geomorphological framework very generally on early statewide geologic maps at scale The Franklin Grove 7.5-minute Quadrangle is located in 1/500,000 (Worthen 1875; Weller 1906). Stratigraphy and north-central Illinois in the north-central part of Lee County, structural geology investigations in the Franklin Grove area Illinois, about 32 miles southwest of Rockford (Winnebago include those by Cady (1920), Leighton (1922), Templeton County), 45 miles east of Illinois-Iowa border, 50 miles and Saxby (1947), Templeton and Willman (1952, 1963), south of the Illinois-Wisconsin border, and 90 miles west Kolata and Buschbach (1976), Willman and Kolata (1978), of Chicago (Cook and DuPage Counties). Map coverage and Kolata et al. (1978). In addition, a map showing the bed- extends to the east from the Dixon East Quadrangle and rock geology of Lee County, including the Franklin Grove south of the Daysville Quadrangle. The quadrangle cov- Quadrangle, was published by McGarry (1999). Geologic ers approximately a 55 square mile area that is bounded by features were generalized in the Geologic Map of Illinois 41°45’00” and 41°52’30” North latitude and 89°15’00” and at scale 1/500,000 (Kolata 2005).