PALAEONTOLOGICAL ASSOCIATION 47Th Annual Meeting Department
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S. -
I I I I I I I I I I I I I I I I I I
View metadata, citation and similar papers at core.ac.uk brought to you by CORE I provided by NERC Open Research Archive I BRITISH GEOLOGICAL SURVEY I MARINE REPORT SERIES TECHNICAL REPORT WB/95/35 I I I I I I BGS TECHNICAL REPORT WB/95/35 The Wight 1:250 OOO-scale Solid Geology sheet I (2nd Edition) by I I J Andrews I' I Geographical index Wight, English Channel I Subject index: Solid Geology I Production of report was funded by: Science budget I Bibliographic reference: Andrews, U. 1995. The Wight 1:250 OOO-scale Solid Geology sheet (2nd Edition) I British Geological Survey Technical Report WB/95/35 British Geological Survey Tel: 0131 667 1000 I Marine Geology & Operations Group Fax: 0131 6684140 Murchison House Tlx: 727343 West Mains Road I Edinburgh EH93LA I NERC Copyright 1995 I This report has been generated from a scanned image of the document with any blank pages removed at the scanning stage. Please be aware that the pagination and scales of diagrams or maps in the resulting report may not appear as in the original I I CONTENTS Page I' 1. INTRODUCTION 1 I 2. DATASET 2 'II 2.1 Onshore 2 2.2 Offshore 4 I 3. MAP REVISION 9 I 3.1 Amendments 9 3.2 Additional features 10 I 4. GEOLOGY 13 4.1 Structural history of the Wessex-Channel Basin 13 I 4.2 Stratigraphy 14 I 5. HYDROCARBONS 23 I 6. ACKNOWLEDGEMENTS 24 'I 7. REFERENCES AND SELECTED BIBLIOGRAPHY 25 I FIGURES I Figure 1 Location of the GSI deep-seismic survey used during map production I Permo-Triassic isopach map Figure 2 I I I I I I I I I 1. -
Supra-Familial Taxon Names of the Diplopoda Table 4A
Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff, -
The First Record of a Mammal from the Insect Limestone Is a Left Lower Incisor of the Rodent Isoptychus (NHMUK.PV.M45566) (Fig.3B)
Vertebrate remains from the Insect Limestone (latest Eocene), Isle of Wight, UK Hooker, J. J., Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK (corresponding author) Evans, S. E., Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WC1E 6BT, UK Davis, P. G., c/o J. J. Hooker Running head: Insect Limestone vertebrates 1 Abstract A small fauna of vertebrates is recorded from the Insect Limestone, Bembridge Marls Member, Bouldnor Formation, late Priabonian, latest Eocene, of the Isle of Wight, UK. The taxa represented are teleost fishes, lizards including a scincoid, unidentified birds and the theridomyid rodent Isoptychus. The scincoid represents the youngest record of the group in the UK. Of particular note is the taphonomic interpretation based on the preservation of anatomical parts of land-based tetrapods that would have been most likely transported to the site of deposition by wind, namely bird feathers and pieces of shed lizard skin. These comprise the majority of the specimens and suggest that the dominant transport mechanism was wind. Keywords: Bembridge Marls – bird – feather – fish – lizard – mammal – rodent – Scincoidea – skin – Squamata – taphonomic – Theridomyidae 2 The Insect Limestone is a discrete bed of fine-grained, hard, muddy, freshwater to hypersaline limestone near the base of the Bembridge Marls Member of the Bouldnor Formation (Munt 2014; Ross & Self 2014). Its age is late Priabonian, thus latest Eocene (Hooker et al. 2009). Insect and plant remains are relatively common, whilst vertebrate remains are exceptionally rare and are limited to fragmentary skeletal elements of fish, lizard, bird and mammal, bird feathers and pieces of shed lizard skin. -
<I>Argyrotheca Bermudana</I>
BULLETIN OF MARINE SCIENCE, 25(2): 186-204,1975 ECOLOGICAL OBSERVATIONS ON THE RECENT ARTICULATE BRACHIOPOD ARGYROTHECA BERMUDANA DALL FROM THE BERMUDA PLATFORM Alan Logan ABSTRACT The occurrence and life habits of Ihe diminutive articulate brachiopod Argyro/Izeca bermu- dalla have been investigated along a general NW-SE traverse across the Bermuda Platform, in- corporating all seven biotopes recognized by Upchurch (1970). Sediment samples indicate that brachiopod tests comprise a consistent though minor « 1%) fraction in reefal shoal sediments, but are totally absent from lagoonal sediments. Preliminary transects reveal that in the reef-front terrace, north reef and central and south reef biotopes, A. bermudalla is cryptic in habit, occurring on the undersides of the foliaceous hermatypic corals MOil/as/rea cavernosa (L.), M. annularis (Ellis and Solander), and Agaricia fragilis Dana. The main host coral for brachiopods on the south shore reefs and associated reef-front terrace is M. cavemosa, on the north reef-front terrace, north and central reefs it is M. anllularis, while A. fragilis is more important on the lagoonal and near-shore reefs. Brachiopod densities generally decrease shorewards from the edge of the Platform. The distribution and density of brachiopods appears to be controlled primarily by the relative abundance of the host corals and their growth form, although other limiting factors may be at work. Clumped distributions are common, probably the result of brooded larvae and in- tense competition for living space. Inter-island areas such as Castle Harbor and Harrington Sound are virtually devoid of brachiopods, although a relict population exists marginally in an unusual sub-boulder habitat in land-locked Walsingham Pond. -
Biochemical Divergence Between Cavernicolous and Marine
The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com bined data set to 20 different parameter sets for variable gap and transversion costs, crusta ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata). -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Lexington Quadrangle Virginia
COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES GEOLOGY OF THE LEXINGTON QUADRANGLE VIRGINIA KENNETH F. BICK REPORT OF INVESTIGATIONS I VIRGINIA DIVISION OF MINERAL RESOURCES Jomes L. Colver Commissioner of Minerol Resources ond Stote Geologist CHARLOTTESVI LLE, VI RGI N IA 1960 Couuowwoer,rn op Vtncrwre DopenrupNr op Puncnesrs exo Supptv Rrculroxn 1960 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond. Virginia MenvrN M. SurHnnr,eNn, Director BOARD Vrcron W. Stnwenr, Petersburg, Chairtnan G. Ar,vrn MessnNnunc, Hampton, Viee'Chairman A. Pr,urvrnr BmnNn, Orange C. S. Cenrnn, Bristol ANpnpw A. Fenr,pv, Danville WonrnrrvcroN FauLKNEn, Glasgow SvoNpv F. Slter,r,, Roanoke EnwrN H. Wrr,r,, Richmond Wrr,r,renr P. Wooor,nv. Norfolk CONTENTS Pece Abstract. '"*i"#:;;;;: . : ::: , : ::.:::::::::..::::::. :.::.::::::: ::,r Z Geography 8 Purpose. 4 Previous Work. Present Work and Acknowledgements. 5 Geologic Formations. 6 Introduction. 6 Precambrian System. 6 Pedlar formation 6 Precambrian and Cambrian Systems. 6 Discussion. 6 Swift Run formation 8 Catoctin greenstone. I Unieoiformation...... ......... I Hampton(Harpers)formation. .......... I Erwin (Antietam) quartzite. Cambrian System . I0 Shady (Tomstown) dolomite 10 Rome (Waynesboro) formation.... ll Elbrook formation. 12 Conococheague limestone. l3 Ordovician System. ......., 14 Chepultepeclimestone. .......... 14 Beekmantown formatron. 14 New Market limestone. 15 Lincolnshire limestone. 16 Edinburg formation. 16 Martinsburg shale... 17 SilurianSystem. ......... 18 Clinchsandstone..... .......... 18 Clinton formation. -
Why Much of What We Teach About Evolution Is Wrong/By Jonathan Wells
ON SCIENCE OR MYTH? Whymuch of what we teach about evolution is wrong Icons ofEvolution About the Author Jonathan Wells is no stranger to controversy. After spending two years in the U.S. Ar my from 1964 to 1966, he entered the University of California at Berkeley to become a science teacher. When the Army called him back from reser ve status in 1968, he chose to go to prison rather than continue to serve during the Vietnam War. He subsequently earned a Ph.D. in religious studies at Yale University, where he wrote a book about the nineteenth century Darwinian controversies. In 1989 he returned to Berkeley to earn a second Ph.D., this time in molecular and cell biology. He is now a senior fellow at Discovery Institute's Center for the Renewal of Science and Culture (www.discovery.org/ crsc) in Seattle, where he lives with his wife, two children, and mother. He still hopes to become a science teacher. Icons ofEvolution Science or Myth? Why Much oJWhat We TeachAbout Evolution Is Wrong JONATHAN WELLS ILLUSTRATED BY JODY F. SJOGREN IIIIDIDIREGNERY 11MPUBLISHING, INC. An EaglePublishing Company • Washington, IX Copyright © 2000 by Jonathan Wells All rights reserved. No part of this publication may be reproduced or trans mitted in any form or by any means electronic or mechanical, including pho tocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a magazine, newspaper, or broadcast. -
EXPLANATORY TEXT for GEOLOGIC MAP of NORTH CAROLINA By
North Carolina State Library t ( f jleigh NORTH CAROLINA DEPARTMENT OF CONSERVATION AND DEVELOPMENT William P. Saunders, Director %*fo _ DIVISION OF MINERAL RESOURCES Jasper L. Stuckey, State Geologist BULLETIN NUMBER 71 EXPLANATORY TEXT FOR GEOLOGIC MAP OF NORTH CAROLINA By Jasper L. Stuckey and Stephen G. Conrad RALEIGH 1958 Norffe Carolir* St** NORTH CAROLINA DEPARTMENT OF CONSERVATION AND DEVELOPMENT William P. Saunders, Director DIVISION OF MINERAL RESOURCES Jasper L. Stuckey, State Geologist BULLETIN NUMBER 71 EXPLANATORY TEXT FOR GEOLOGIC MAP OF NORTH CAROLINA By Jasper L. Stuckey and Stephen G. Conrad RALEIGH 1958 MEMBERS OF THE BOARD OF CONSERVATION AND DEVELOPMENT GOVERNOR LUTHER H. HODGES, Chairman Raleigh MILES J. SMITH, First Vice Chairman Salisbury WALTER J. DAMTOFT, Second Vice Chairman Canton CHARLES S. ALLEN ..__„___ Durham W. B. AUSTIN Jefferson F. J. BOLING Siler City H. C. BUCHAN, JR North Wilkesboro SCROOP W. ENLOE, JR Spruce Pine VOIT GILMORE Southern Pines R. M. HANES Winston-Salem LEO H. HARVEY Kinston CHARLES H. JENKINS - __..._...Ahoskie AMOS R. KEARNS High Point H. C. KENNETT Durham R.W.MARTIN Raleigh CECIL MORRIS Atlantic HUGH M. MORTON Wilmington W. EUGENE SIMMONS Tarboro T.MAX WATSON Spindale LETTER OF TRANSMITTAL Raleigh, North Carolina February 4, 1958 To His Excellency, HONORABLE LUTHER H. HODGES Governor of North Carolina Sir: I have the honor to submit herewith manuscript for publication as Bulletin No. 71, "Explanatory Text for Geologic Map of North Carolina". This text is an essential part of the new geologic map of North Carolina. The new geologic map and this explanatory text contain a summary of the best information pres- ently available on the geology of North Carolina. -
(Public Pack)Agenda Document for South Planning Committee, 28/08
Shropshire Council Legal and Democratic Services Shirehall Abbey Foregate Shrewsbury SY2 6ND Date: Monday, 19 August 2019 Committee: South Planning Committee Date: Wednesday, 28 August 2019 Time: 2.00 pm Venue: Shrewsbury/Oswestry Room, Shirehall, Abbey Foregate, Shrewsbury, Shropshire, SY2 6ND You are requested to attend the above meeting. The Agenda is attached Claire Porter Director of Legal and Democratic Services (Monitoring Officer) Members of the Committee Substitute Members of the Committee Andy Boddington Heather Kidd David Evans Christian Lea Simon Harris Elliott Lynch Nigel Hartin William Parr Richard Huffer Vivienne Parry Cecilia Motley Kevin Turley Madge Shineton Leslie Winwood Robert Tindall David Turner Tina Woodward Your Committee Officer is: Linda Jeavons Committee Officer Tel: 01743 257716 Email: [email protected] AGENDA 1 Apologies for Absence To receive any apologies for absence. 2 Minutes (Pages 1 - 8) To confirm the minutes of the South Planning Committee meeting held on 30 July 2019. Contact Linda Jeavons (01743) 257716. 3 Public Question Time To receive any questions or petitions from the public, notice of which has been given in accordance with Procedure Rule 14. The deadline for this meeting is no later than 2.00 pm on Friday, 23 August 2019. 4 Disclosable Pecuniary Interests Members are reminded that they must not participate in the discussion or voting on any matter in which they have a Disclosable Pecuniary Interest and should leave the room prior to the commencement of the debate. 5 Land East Of The School House, Hopton Cangeford, Shropshire (17/04421/FUL) (Pages 9 - 36) Erection of two detached dwellings with detached open fronted double garages 6 Proposed Residential Development Land East Of Upper House Farm, Hopton Cangeford, Shropshire (18/02529/FUL) (Pages 37 - 56) Erection of three dwellings in a courtyard arrangement with access drive and parking. -
Trace Fossils and Substrates of the Terminal Proterozoic–Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing
Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing Mary L. Droser*†,So¨ ren Jensen*, and James G. Gehling‡ *Department of Earth Sciences, University of California, Riverside, CA 92521; and ‡South Australian Museum, Division of Natural Sciences, North Terrace, Adelaide 5000, South Australia, Australia Edited by James W. Valentine, University of California, Berkeley, CA, and approved August 16, 2002 (received for review May 29, 2002) The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at Ϸ555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sed- iments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. he appearance and subsequent diversification of bilaterian Tanimals is a topic of current controversy (refs. 1–7; Fig. 1). Three principal sources of evidence exist: body fossils, trace fossils (trails, tracks, and burrows of animal activity recorded in the sedimentary record), and divergence times calculated by means of a molecular ‘‘clock.’’ The body fossil record indicates a geologically rapid diversification of bilaterian animals not much earlier than the Precambrian–Cambrian boundary, the so-called Cambrian explosion.