Case Study on HYBRID VEHICLES Power Vehicle Type
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,836,541 Pham (45) Date of Patent: Nov
USOO5836541A United States Patent (19) 11 Patent Number: 5,836,541 Pham (45) Date of Patent: Nov. 17, 1998 54) EASILY-CONVERTIBLE FIXED-WING 3,986,686 10/1976 Girard ..................................... 244f7 A ROADABLE AIRCRAFT 4,269,374 5/1981 Miller .......................................... 244/2 4,720,061 1/1988 Abdenour et al. ... 244/46 76 Inventor: Roger N. C. Pham, 625 Veranda Ct., 4.881,701 11/1989 Bullard - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 244/2 #1140, Grand Prairie, Tex. 75050 5,050,817 9/1991 Miller .......................................... 244/2 21 Appl.ppl. No.: 859,7329 Primary Examiner-Galen L. Barefoot 57 ABSTRACT 22 Filed: May 21, 1997 57 A fixed-wing four-seat light aircraft that can be easily Related U.S. Application Data converted to a roadway vehicle within minutes by a single perSon in the field, comprising a one-piece wing center panel 63 Continuation-in-part of Ser. No. 811,503, Mar. 5, 1997. with foldable wing tips on each sides. The whole wing unit (51) Int. Cl. ............................................... B64C37.00 is then rotatably mounted on top of the fuselage. The aircraft 52 U.S. CI 24412; 244/46; 244/49 features a conventional front-engine-and-propeller lay-out, 58 Fi la fs - - - - - - - - h - - - - - - - - - - - - - - - - - - - - - - - s 2442. 46.49 with a short fuselage for convenient roadability and 58) Field of Searc 244/135R, 1 R, 100 R. 1 02 R 50 garageability, with horizontal Stabilizer of Significant Span s s s s with foldable tips for adequate flight stability. The vehicle 56) References Cited has a low ride-height with a low center of gravity, four wheels with independent Suspension, nose-height leveling U.S. -
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16. -
Rail Industry Decarbonisation Taskforce
RAIL INDUSTRY DECARBONISATION TASKFORCE FINAL REPORT TO THE MINISTER FOR RAIL JULY 2019 | WITH THE SUPPORT OF RSSB DECARBONISATION TASKFORCE | FINAL REPORT | 01 Foreword I am pleased to present, on behalf of the Rail Industry Decarbonisation Taskforce and RSSB, the final report responding to the UK Minister for Rail’s challenge to the industry to remove “all diesel only trains off the track by 2040” and “produce a vision for how the rail industry will decarbonise.” The initial report, published in January 2019, set out credible technical options to achieve this goal and was widely welcomed by stakeholders. RIA has published its report on the Electrification Cost Challenge. This final report confirms that the rail industry can lead the way in Europe on the drive to decarbonise. It sets out the key building blocks required to achieve the vision that the rail industry can be a major contributor to the UK government’s1 target of net zero carbon2, 3 by 2050, provided that we start now. The GB rail system continues to be one of the lowest carbon modes of transport. It has made material progress in the short time since the publication of the initial report. • The industry has continued to develop technologies toward lower carbon. • RSSB has completed its technical report into decarbonisation, T1145. • The investigation into alternatives for freight, T1160, is well underway. • The Network Rail System Operator is conducting a strategic review to develop the lowest cost pathway for rail to decarbonise to contribute to the national net zero carbon target. The Taskforce is very cognisant of the government review of the rail industry ongoing under the independent chairmanship of Keith Williams and we have provided evidence accordingly. -
HS Code Product Description 23012010 Fish Meal for Feed
Note: All products that are classified in the 8‐digit subheadings of the Harmonized Tariff Schedule HS Code Product description 23012010 Fish meal for feed 26180010 Manganese slag produced by smelting steel 26190000 Slag, scum, scale and other waste generated from smelting steel 26209990 Mineral ash and residue containing other metals and compounds 27011100 Unformed anthracite, whether or not powdered 27011210 Unformed coking bituminous coal, whether or not powdered 27011290 Other bituminous coal not made, whether or not powdered 27011900 Other coal not made, whether or not powdered 27012000 Coal brick, briquettes and similar solid fuels made of coal 27021000 lignite 27022000 Finished brown coal 27030000 Peat (including peat for fertilizer) regardless of molding 27040010 Coal coke and semi-coke regardless of molding 27040090 Charcoal Gas, water gas, furnace gas and similar gases, except for petroleum gas and other hydrocarbon 27050000 gases Tar and mineral tar distilled from coal, lignite, or peat, whether or not dehydrated or partially 27060000 distillation, including reconstitution of tar 27071000 crude benzene 27072000 Crude toluene 27073000 Crude xylene 27074000 naphthalene Other aromatic mixtures, by volume of aromatics distilled at 250 ° C by volume (including loss) at 27075000 65% or more 27079100 creosote 27079910 phenol Other products obtained by distillation of coal tar; aromatics weighing more than non-aromatic 27079990 ingredients product 27081000 Asphalt from coal tar or other mineral tar 27082000 Bituminous coke derived -
Assessment Method of Fuel Consumption and Emissions of Aircraft During Taxiing on Airport Surface Under Given Meteorological Conditions
sustainability Article Assessment Method of Fuel Consumption and Emissions of Aircraft during Taxiing on Airport Surface under Given Meteorological Conditions Ming Zhang * , Qianwen Huang, Sihan Liu and Huiying Li College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] (Q.H.); [email protected] (S.L.); [email protected] (H.L.) * Correspondence: [email protected] or [email protected] Received: 27 September 2019; Accepted: 31 October 2019; Published: 2 November 2019 Abstract: Reducing fuel consumption and emissions of aircrafts during taxiing on airport surfaces is crucial to decrease the operating costs of airline companies and construct green airports. At present, relevant studies have barely investigated the influences of the operation environment, such as low visibility and traffic conflict in airports, reducing the assessment accuracy of fuel consumption and emissions. Multiple aircraft ground propulsion systems on airport surfaces, especially the electric green taxiing system, have attracted wide attention in the industry. Assessing differences in fuel consumption and emissions under different taxiing modes is difficult because environmental factors were hardly considered in previous assessments. Therefore, an innovative study was conducted based on practical running data of quick access recorders and climate data: (1) Low visibility and taxiing conflict on airport surfaces were inputted into the calculation model of fuel consumption to set up a modified model of fuel consumption and emissions. (2) Fuel consumption and emissions models under full- and single-engine taxiing, external aircraft ground propulsion systems, and electric green taxiing system could accurately estimate fuel consumption and emissions under different taxiing modes based on the modified model. -
Motorcycle, Motorized Bicycle and Electric-Assisted Bicycle Manual
Motorcycle, Motorized Bicycle and electric-assisted Bicycle Manual Minnesota Department of Public Safety Driver and Vehicle Services Division www.mndriveinfo.org Minnesota Motorcycle, Motorized Bicycle and Electric-Assisted Bicycle Manual The Minnesota Department of Public Safety Driver and Vehicle Services Division prepared this manual. Visit the Department of Public Safety Web site at www.mndriveinfo.org to access online versions of our driver’s manuals. PS30001-12 (2/11) About this Manual… This manual is about operating For more information on Minnesota motorcycles, motorized bicycles and driving laws and rules for all drivers, electric-assisted bicycles on Minnesota refer to the Minnesota Driver’s streets and highways. Manual. The first section concerns Minnesota This manual is printed by permission laws and requirements. For complete of the Minnesota Department of standards, consult Minnesota state Public Safety. statutes and rules. This document is This manual is prepared by the not a proper legal authority to cite Division of Driver and Vehicle Services in court. with permission of the Minnesota The second section (Operation Department of Public Safety. Manual) contains information on safe This information can be made motorcycling. The Operation Manual, available in alternative format to provided by the Motorcycle Safety individuals with disabilities. For Foundation, is not about Minnesota assistance, call 651-297-3298 or law — it is about riding smart and TTY 651-282-6555. staying safe. CONTENTS Preface Instruction Permit Process . .VI Rider Training..................I Skills Test ....................VI Duplicate Permits............. VII Motorcycles Vehicle Registration . VII License Endorsement and Permit . II Insurance Requirements ........ VII Permit Process . II Equipment Requirements ....... VII Skills Test ................... -
High Efficiency Moped a MQP Proposal Submitted to the Faculty Of
High Efficiency Moped A MQP Proposal Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Mechanical Engineering by ___________________________________ Tim Ellsworth Date: 10/11/2012 Approved: Prof. Kenneth Stafford, Major Advisor Prof. Cosme Furlong-Vazquez Table of Contents List of Tables ................................................................................................................................................. 4 List of Figures ................................................................................................................................................ 5 Abstract ......................................................................................................................................................... 7 Executive Summary ....................................................................................................................................... 9 Introduction ................................................................................................................................................ 12 Objective ................................................................................................................................................. 12 History ..................................................................................................................................................... 13 Component Selection ................................................................................................................................. -
The Role for Federal R&D on Alternative Automotive
THE ROLE FOR FEDERAL R&D ON ALTERNATIVE AUTOMOTIVE POWER SYSTEMS by John B. Heywood Henry D. Jacoby Lawrence H. Linden MIT Energy Laboratory Report No. MIT-EL 74-013 November 1974 Contract No. EN-44166 Report # MIT-EL 74-013 REPORT SUBMITTED TO: THE OFFICE OF ENERGY R & D POLICY NATIONAL SCIENCE FOUNDATION by the ENERGY LABORATORY Massachusetts Institute of Technology Cambridge, Massachusetts THE ROLE FOR FEDERAL R & D ON ALTERNATIVE AUTOMOTIVE POWER SYSTEMS prepared by John B. Heywood Henry D. Jacoby Lawrence H. Linden with the assistance of Patricia D. Mooney Joe M. Rife November 1974 4 i EXECUTIVE SUMMARY Within the past few years, reductions in air pollutant emissions and fuel consumption of the U.S. passenger car fleet have become important public policy goals. The automobile manufacturers have responded to government regulation or changing market pressures in these areas by modifying the internal combustion engine (ICE), the powerplant which has dominated the passenger car application for almost sixty years. There are, however, alternatives to the ICE which may offer substantial improvements in emissions and fuel economy, but to many people the industry appears reluctant to deal seriously with them, and a Federally sponsored research and development (R & D) program has been called for. This report examines the question: Is it appropriate for the Federal Government to support R & D on alternative automotive powerplants? This issue is highly controversial. Some argue that emissions regulations and the high level of importance given to fuel economy by car buyers give the manufacturers strong and clear incentives for improvements in these areas. -
Meeting Notice and Agenda
Members Jim Desmond, Chair Mayor, City of San Marcos (Representing North County Inland) Bill Sandke, Vice Chair Councilmember, City of Coronado (Representing South County) Georgette Gomez, Councilmember TRANSPORTATION City of San Diego Ron Roberts, Supervisor COMMITTEE County of San Diego Bill Baber AGENDA Vice Mayor, City of La Mesa (Representing East County) Catherine Blakespear Mayor, City of Encinitas (Representing North County Coastal) Friday, June 16, 2017 Harry Mathis, Chair 9 a.m. to 12 noon Metropolitan Transit System SANDAG Board Room John Aguilera, Vice Chair North County Transit District 401 B Street, 7th Floor Jim Janney San Diego San Diego County Regional Airport Authority Alternates AGENDA HIGHLIGHTS Judy Ritter Mayor, City of Vista • ROSE CREEK BIKEWAY PROJECT: (Representing North County Inland) CONSTRUCTION MANAGER/GENERAL Mary Salas CONTRACTOR CONSTRUCTION SERVICES Mayor, City of Chula Vista (Representing South County) AGREEMENT SUPPLEMENT 7 Mark Kersey, Councilmember City of San Diego • FY 2018 CLAIMS FOR TRANSPORTATION Bill Horn, Supervisor DEVELOPMENT ACT AND STATE TRANSIT County of San Diego ASSISTANCE Greg Cox, Supervisor County of San Diego • FIRST TransNet TEN-YEAR COMPREHENSIVE Jennifer Mendoza Mayor Pro Tem, City of Lemon Grove PROGRAM REVIEW (Representing East County) Ellie Haviland Councilmember, City of Del Mar (Representing North County Coastal) PLEASE SILENCE ALL ELECTRONIC DEVICES DURING THE MEETING Lorie Bragg Metropolitan Transit System YOU CAN LISTEN TO THE TRANSPORTATION COMMITTEE Bill Horn / Mark Packard North County Transit District MEETING BY VISITING OUR WEBSITE AT SANDAG.ORG April Boling San Diego County Regional Airport Authority MISSION STATEMENT The 18 cities and county government are SANDAG serving as the forum for regional decision-making. -
Flywheel Energy Storage Systems for Rail
Imperial College London Department of Mechanical Engineering Flywheel Energy Storage Systems for Rail Matthew Read November 2010 Thesis submitted for the Diploma of the Imperial College (DIC), PhD degree of Imperial College London 1 I declare that the research presented in this Thesis is my own work and that the work of others is properly acknowledged and referenced. Matthew Read 2 Abstract In current non-electrified rail systems there is a significant loss of energy during vehicle braking. The aim of this research has been to investigate the potential benefits of introducing onboard regenerative braking systems to rail vehicles. An overview of energy saving measures proposed within the rail industry is presented along with a review of different energy storage devices and systems developed for both rail and automotive applications. Advanced flywheels have been identified as a candidate energy storage device for rail applications, combining high specific power and energy. In order to assess the potential benefits of energy storage systems in rail vehicles, a computational model of a conventional regional diesel train has been developed. This has been used to define a base level of vehicle performance, and to investigate the effects of energy efficient control strategies focussing on the application of coasting prior to braking. The impact of these measures on both the requirements of an energy storage system and the potential benefits of a hybrid train have been assessed. A detailed study of a range of existing and novel mechanical flywheel transmissions has been performed. The interaction between the flywheel, transmission and vehicle is investigated using a novel application-independent analysis method which has been developed to characterise and compare the performance of different systems. -
The Hybrid Trains in International Logistics Transportation
MATEC Web of Conferences 294, 04017 (2019) https://doi.org/10.1051/matecconf/201929404017 EOT-2019 The hybrid trains in international logistics transportation Zoia Kaira1, Liudmila Golovkova2,*, Ivan Rekun2, and Yurii Trubai2 1 WSB University in Gdansk, Professor of management, 80-268 Gdansk, Grunwaldska 238A, Poland 2 DNURT, Department of Finance and еconomic security, 49010 Dnipro, Lazaryan Street 2, Ukraine Abstract. Analytical information for the market players concerning to the overall future hybrid train market and the subsegments is considered. The forecast of the volume railway transportation in Ukraine is represented in the paper. The aim of the paper is to examine the role of hybrid trains in logistics transportation segment under escalating importance of international logistics where transport segment is influenced in largely degree of political, economic, social, technological, environmental and legal changes. The paper is targeted the stakeholders to provide with information on key market drivers, restraints, challenges, and opportunities. 1. Background and poor logistics services increase transport costs and delivery times whereas competitiveness becomes Transportation logistics issues are of great importance increasingly dependent on cost efficiency. for business, as customers location and resourcing Along with remoteness, they are major determinants opportunities are widely disperced. Neglect of logistics of a country’s ability to participate in the world economy aspects brings nor only higher costs but eventual such as connectivity [1]. The importance of connectivity noncompetitiveness, which will result in diminished is very high in today’s globalised economy, where value market share, more expensive supplies or lower chains are increasingly interconnected and spread out all profits.logistics problems can prevent exporters from over the world [2]. -
The Hydrogen Option for Energy: a Strategic Advantage for Quebec
The hydrogen option for energy: a strategic advantage for Quebec Jacques Roy, Ph.D. Marie Demers, Ph.D. Full Professor Research Associate, CHUS Department of Logistics and Operations Management Université de Sherbrooke HEC Montréal December 2019 Table of Contents 1. Executive summary ....................................................................... 3 6. Flourishing external markets .................................................................29 2. Introduction ................................................................................. 5 7. Profile of the situation in Quebec .........................................................39 7.1 Energy sources used in Quebec ............................................................... 39 3. Hydrogen: an energy vector .......................................................... 7 7.2 Energy dedicated to the transportation sector ..............................................40 3.1 A renewable and efficient energy source ..............................................7 7.3 Greenhouse gas emissions ......................................................................40 3.2 Hydrogen and hydroelectricity: a winning combination ...........................9 7.4 Advent of electric vehicles ....................................................................... 41 3.3 Leverage for reducing GHG emissions and increasing energy efficiency ...10 7.5 Incentives for running on clean energy ....................................................... 41 4. Different uses of hydrogen as an energy source