The Hybrid Trains in International Logistics Transportation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bionic Shape Design of Electric Locomotive and Aerodynamic Drag Reduction
ARCHIVES OF TRANSPORT ISSN (print): 0866-9546 Volume 48, Issue 4, 2018 e-ISSN (online): 2300-8830 DOI: 10.5604/01.3001.0012.8369 BIONIC SHAPE DESIGN OF ELECTRIC LOCOMOTIVE AND AERODYNAMIC DRAG REDUCTION Zhenfeng WU1, Yanzhong HUO2, Wangcai DING3, Zihao XIE4 1, 2, 3, 4 School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China Contact: 1) [email protected] Abstract: Bionics has been widely used in many fields. Previous studies on the application of bionics in locomotives and vehicles mainly focused on shape optimisation of high-speed trains, but the research on bionic shape design in the electric locomotive field is rare. This study investigated a design method for streamlined electric locomotives according to the principles of bionics. The crocodiles were chosen as the bionic object because of their powerful and streamlined head shape. Firstly, geometric characteristic lines were extracted from the head of a crocodile by analysing the head features. Secondly, according to the actual size requirements of the electric locomotive head, a free-hand sketch of the bionic electric locomotive head was completed by adjusting the position and scale of the geometric characteristic lines. Finally, the non- uniform rational B-splines method was used to establish a 3D digital model of the crocodile bionic electric locomotive, and the main and auxiliary control lines were created. To verify the drag reduction effect of the crocodile bionic electric locomotive, numerical simulations of aerodynamic drag were performed for the crocodile bionic and bluff body electric locomotives at different speeds in open air by using the CFD software, ANSYS FLUENT16.0. -
PENNSYLVANIA RAILROAD ELECTRIC LOCOMOTIVE GG1 4800 National Historic Mechanical Engineering Landmark
PENNSYLVANIA RAILROAD ELECTRIC LOCOMOTIVE GG1 4800 National Historic Mechanical Engineering Landmark Friends of GG1 4800 The American Society of Mechanical Engineers Railroad Museum of Pennsylvania Strasburg, Pennsylvania April 23, 1983 he GG1 was a remarkable design, and so The locomotive required two frames; one of the two pantographs. Steps at the ends successful, because of its integrative each frame was a one-piece casting from the of the prototype GG1 led to the pantographs T synthesis of innovations from many General Steel Castings Corporation and was on the roof. But, as long as a pantograph was fields of engineering — mechanical, electrical, machined by Baldwin at Eddystone, Pennsyl- raised and “hot”, access was prevented by a industrial. vania. The two frames, each nearly forty feet blocking plate at the top of the steps. Throwing In 1913, before the era of the GG1, the long, held three driver axle assemblies and a a lever swung the plate clear but caused the Pennsylvania Railroad decided to electrify its two-axle pilot truck. Driver axles fit into roller pantograph to de-energize by dropping. tracks in the vicinity of Philadelphia. The bearing boxes that could move vertically in system, at 11,000 volts and 25 hertz, expanded pedestal jaws in the frame. The driver axle Three pairs of General Electric GEA-627-A1 until by the early 1930s it stretched from New was surrounded by a quill on which was electric motors were mounted in each frame. York City south to Wilmington, Delaware, and mounted a ring gear driven by the pinions of Each pair drove one quill. -
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16. -
Sali DIESEL-ELECTRIC LOCOMOTIVE Empresa Ferroviaria Andina S.A, Bolivia
SALi DIESEL-ELECTRIC LOCOMOTIVE Empresa Ferroviaria Andina S.A, Bolivia At the end of 2017, the Andina-FCA Railway Company and Stadler Valencia signed a contract for the supply of the first three SALi locomotives to be used for freight transport services on its metric gauge railway network in Bolivia. SALi is a 6-axle diesel-electric locomotive with an ultra-lightweight design and with forefront technology, to successfully face the challenges entailed in operating on metre-gauge networks under conditions of great altitude (over 5,000 metres above sea-level) at a maximum speed of 100km/h, combining a high-power output at great altitude with reduced fuel consumption. It features 6 AC traction motors and two acoustic and heat-insulated driver’s cabs, to enhance comfort under extreme temperature conditions. Due to its design and performance, it is destined to become the benchmark locomotive of the Bioceanic Rail Integration Corridor which, crossing Bolivia, will link the Peruvian port of Ilo with the port of Santos, near Sao Paulo in Brazil. www.stadlerrail.com Stadler Rail Group Stadler Rail Valencia S.A. Ernst-Stadler-Strasse 1 Pol. Ind. Mediterráneo. Mitjera 6 CH-9565 Bussnang E-46550 Albuixech (Valencia) Phone +41 71 626 21 20 Phone +34 96 141 50 00 [email protected] [email protected] Technical features Vehicle data Technology – Based on proven models such as the EURO4000, UKLIGHT and Customer Empresa Ferroviaria Andina S.A EURODUAL. Region Bolivia – Suitable for operations at high altitude (over 5,000 m above -
Rail Industry Decarbonisation Taskforce
RAIL INDUSTRY DECARBONISATION TASKFORCE FINAL REPORT TO THE MINISTER FOR RAIL JULY 2019 | WITH THE SUPPORT OF RSSB DECARBONISATION TASKFORCE | FINAL REPORT | 01 Foreword I am pleased to present, on behalf of the Rail Industry Decarbonisation Taskforce and RSSB, the final report responding to the UK Minister for Rail’s challenge to the industry to remove “all diesel only trains off the track by 2040” and “produce a vision for how the rail industry will decarbonise.” The initial report, published in January 2019, set out credible technical options to achieve this goal and was widely welcomed by stakeholders. RIA has published its report on the Electrification Cost Challenge. This final report confirms that the rail industry can lead the way in Europe on the drive to decarbonise. It sets out the key building blocks required to achieve the vision that the rail industry can be a major contributor to the UK government’s1 target of net zero carbon2, 3 by 2050, provided that we start now. The GB rail system continues to be one of the lowest carbon modes of transport. It has made material progress in the short time since the publication of the initial report. • The industry has continued to develop technologies toward lower carbon. • RSSB has completed its technical report into decarbonisation, T1145. • The investigation into alternatives for freight, T1160, is well underway. • The Network Rail System Operator is conducting a strategic review to develop the lowest cost pathway for rail to decarbonise to contribute to the national net zero carbon target. The Taskforce is very cognisant of the government review of the rail industry ongoing under the independent chairmanship of Keith Williams and we have provided evidence accordingly. -
H2@Railsm Workshop
SANDIA REPORT SAND2019-10191 R Printed August 2019 H2@RailSM Workshop Workshop and report sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office, and the US Department of Transportation Federal Railroad Administration. Prepared by Mattie Hensley, Jonathan Zimmerman Prepared by Sandia National Laboratories Albuquerque, New MexiCo 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. -
Comotive: Preliminary Design Study
WAYS l DE ENERGY STORAGE STUDY Volume IV - Dual Mode Locomotive: Preliminary Design Study L. J. Lawson L. M. Cook AIRESEARCH MANUFACTURING COMPANY OF CALIFOR,NIA Torrance CA 90509 FEBRUARY 1979 FINAL REPORT DGCUMEN'T 15 /V&II.ABLE TO TkE PUBLIC TPIROLJGH 7Ht NATICJNA1 TECHNICAL. INFOHMATICIN SERVICE. SPRINGFrELD, VIRGINIA 72161 $1 I Prepared for I1 4C -<I, U,S, DEPARTMENT OF TRANSPORTATION FEDERAL RAILROAD ADMINISTRATION ?- - ', offj ce of Research and Development ;(TF Washington DC 20590 I975 I il .A47 I AS'SOCIAT~ON AM~<@c~~; fjd&jj,p~7P. F' " L i, t-4, * I :5 IV- I r- x----- '-$-;7% Y I w U>3 aq )P <>..? *F$p p-.?q&' 4 *BECB~~@~C;~I\~g lkdLfi,.&~5+~ 4 \ AESEARC~ TEST CEPAB~,QE,$~- 3 4I PUEgio, ca 81001 ,. NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no I iab i I ity for its contents or the use thereof. The United States Government does not endorse products or manufacturers. Trade orrnanufacturers' names appear . herein sol el y because they are considered essential to the object of this report. 1 Technical Heport Documentation Page ......... R.port No. _- R.cipi.nt', Cotolo~ No. l. 2. C;overnmonf Ace.'.'on No. 3. ~~\)9 'I,. 1. FRA/ORD-78/78,IV ,)\)\..- - 4. Titl" ond Subtitl. 5. Report Dote WAYSIDE ENERGY STORAGE STUDY February 1979 Volume IV - Dual-Mode Locomotive: 6. Performing Organiz.atiQn Code Preliminary Design Study --- -_. B.a P• .,fof'minOi O"'Qantza'.on Re~Qr. -
Introduction of Electronic Commerce
Orf 467 – Transportation Systems Analysis Fall 2018/19 Enhancing Mobility Through Technology in a Congested Urban Environment Evolution of Ground Transport Technology: From the Omnibus through Personal Rapid Transit (PRT) to autonomousTaxis (aTaxis) The Problem: Urban Congestion Snarls Mobility Also issues about accessibility and equality of access Orf 467 – Transportation Systems Analysis Fall 2018/19 Over the years technology has evolved… From: To: Omnibus on Blackfriar’s Bridge, 1798 Hummers ~2007 (Pre Crisis) To: Prius & Tesla 2017 (?????) To: GoogleCars ~ 2017+ ??? Orf 467 – Transportation Systems Analysis Fall 2018/19 Evolution of the OmniBus for intra-urban mass transportation Start: Geo Enhancement: London,1798 NYC, 1830 Technology Elements: • Capacity: ~10 Seated Passengers • Propulsion: Horses or Mules • Externalities: Disease and non-operating revenue from pollution • Suspension: Steel Sprung Wooden Wheel with solid axel • Way: “Flat” Pavement (stone, wood, compacted earth) • Headway & Lateral Control: Human Capacity Enhancement: Propulsion Enhancement: Support Enhancement: Double Decker, London Steam, London Iron (Steel) Rails Orf 467 – Transportation Systems Analysis Fall 2018/19 Growth of Horse-Drawn Street Railway Technology 1850: NYC 1860: London 1875: Minneapolis 1890: Broadway NYC 1908: Washington , GA Week 8 Orf 467 – Transportation Systems Analysis Fall 2018/19 Evolution of Horse-Drawn Street Railway Technology Today: DisneyWorld Orf 467 – Transportation Systems Analysis Fall 2018/19 Growth of Cable Street Railway Technology -
Flywheel Energy Storage Systems for Rail
Imperial College London Department of Mechanical Engineering Flywheel Energy Storage Systems for Rail Matthew Read November 2010 Thesis submitted for the Diploma of the Imperial College (DIC), PhD degree of Imperial College London 1 I declare that the research presented in this Thesis is my own work and that the work of others is properly acknowledged and referenced. Matthew Read 2 Abstract In current non-electrified rail systems there is a significant loss of energy during vehicle braking. The aim of this research has been to investigate the potential benefits of introducing onboard regenerative braking systems to rail vehicles. An overview of energy saving measures proposed within the rail industry is presented along with a review of different energy storage devices and systems developed for both rail and automotive applications. Advanced flywheels have been identified as a candidate energy storage device for rail applications, combining high specific power and energy. In order to assess the potential benefits of energy storage systems in rail vehicles, a computational model of a conventional regional diesel train has been developed. This has been used to define a base level of vehicle performance, and to investigate the effects of energy efficient control strategies focussing on the application of coasting prior to braking. The impact of these measures on both the requirements of an energy storage system and the potential benefits of a hybrid train have been assessed. A detailed study of a range of existing and novel mechanical flywheel transmissions has been performed. The interaction between the flywheel, transmission and vehicle is investigated using a novel application-independent analysis method which has been developed to characterise and compare the performance of different systems. -
The Hydrogen Option for Energy: a Strategic Advantage for Quebec
The hydrogen option for energy: a strategic advantage for Quebec Jacques Roy, Ph.D. Marie Demers, Ph.D. Full Professor Research Associate, CHUS Department of Logistics and Operations Management Université de Sherbrooke HEC Montréal December 2019 Table of Contents 1. Executive summary ....................................................................... 3 6. Flourishing external markets .................................................................29 2. Introduction ................................................................................. 5 7. Profile of the situation in Quebec .........................................................39 7.1 Energy sources used in Quebec ............................................................... 39 3. Hydrogen: an energy vector .......................................................... 7 7.2 Energy dedicated to the transportation sector ..............................................40 3.1 A renewable and efficient energy source ..............................................7 7.3 Greenhouse gas emissions ......................................................................40 3.2 Hydrogen and hydroelectricity: a winning combination ...........................9 7.4 Advent of electric vehicles ....................................................................... 41 3.3 Leverage for reducing GHG emissions and increasing energy efficiency ...10 7.5 Incentives for running on clean energy ....................................................... 41 4. Different uses of hydrogen as an energy source -
The Informationalized Infrastructural Ideal. (Under the Direction of Dr
ABSTRACT OSWALD, KATHLEEN FRAZER. Smarter, Better, Faster, Stronger: The Informationalized Infrastructural Ideal. (Under the direction of Dr. Jeremy Packer). As the public and private sector spend and invest billions of dollars maintaining, repairing, securing, constructing, and informationalizing infrastructure, scholars of communication continue to neglect the central role of infrastructure in shaping contemporary mediascapes. This neglect stems from a number of tendencies in the field of communication, including a move away from the transmission model of communication, a separation in thinking about the communication of information and the communication of people and objects, and a tendency to think about technologies in terms of their historical development, mediation, effects, uses or potentials rather than to understand technologies as cultural forms subject to alternative arrangements. While these academic biases make the study of communication, mobility, and technology challenging, my work takes an interdisciplinary approach that recognizes and works to move past historical divisions in the disciplines in the interest of exploring the ways in which informationalization is changing communication, culture, and mediascapes. I locate informationalization—adding a data layer to processes through instrumentation, interconnection and intelligence—at the center of changing articulations of communication, transportation, information and housing infrastructure. I take as central a double reorganization of infrastructure under two competing logics: a utopian view that positions the informationalization of networks as “smart” and can be traced across a variety of popular, industry and government discourses as a compelling argument for connection; and a logic that positions infrastructure as “critical,” which while intensified by post 9/11 sensibilities, has clear origins in earlier beliefs about the dystopian potentials of connection, including computer crime and cyberwarfare. -
Concept Validation for Hybrid Trains CONTRACT REFERENCE NO: Dftrg/0078/2007
Final Report: Concept Validation for Hybrid Trains CONTRACT REFERENCE NO: DfTRG/0078/2007 Birmingham Research and Development Limited Dr Stuart Hillmansen, Dr Clive Roberts Dr Andrew McGordon, Dr Paul Jennings www.railway.bham.ac.uk March 10, 2008 1 Contents 1 Introduction 3 2 Objectives overview 3 2.1 Phase1overview........................... 4 2.2 Phase2overview........................... 5 2.3 Hybridrailwayvehicles. 5 3 Results: Phase 1 8 3.1 Analysisprocedure .......................... 8 3.2 Vehicledescription .......................... 8 3.3 Routedescription .......................... 9 3.4 Resultsofanalysis: vehiclesimulation . ... 11 3.4.1 Initialvalidation . 11 3.4.2 Wholedayresults ...................... 12 4 Results: Phase 2 17 4.1 Overviewofhybridsimulationmethod. 17 4.2 Results of analysis: Diesel engine operating points . ...... 18 4.3 Results of analysis: State of Charge simulation and energy analysis 19 5 Summary of results and discussion 21 2 1 INTRODUCTION 1 Introduction This report describes the results from the Department for Transport funded project ‘DfTRG/0078/2007 - Concept Validation for Hybrid Trains’. The work has been completed by the Universities of Birmingham and Warwick through Birmingham Research and Development Limited. The hybridisation of railway propulsion systems could lead to a reduction in energy consumption and emissions. This document describes the results of a pro- gramme of work in which this concept design is addressed. The objectives of the work are reviewed and then the findings of each phase of the project will be de- scribed. 2 Objectives overview 1. The objective of this work was to create a computer based model that can be used to: (a) Demonstrate the technical feasibility of a hybrid concept for a typical High-Speed Train (HST) type train and to identify the likely costs and benefits, including any reduction in gaseous emissions.