Apermanent Magnet Synchronous Motor for an Electric Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Apermanent Magnet Synchronous Motor for an Electric Vehicle TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 A PERMANENT MAGNET SYNCHRONOUS MOTOR FOR AN ELECTRIC VEHICLE - DESIGN ANALYSIS Yung-kang Chin Stockholm 2004 ELECTRICAL MACHINES AND POWER ELECTRONICS DEPARTMENT OF ELECTRICAL ENGINEERING ROYAL INSTITUTE OF TECHNOLOGY SWEDEN Submitted to the School of Computer Science, Electrical Engineering and Engineering Physics, KTH, in partial fulfilment of the requirements for the degree of Technical Licentiate. Copyright © Yung-kang Chin, Sweden, 2004 Printed in Sweden Universitetsservice US AB TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 PPrreeffaaccee This technical licentiate thesis deals with the design analysis of a permanent magnet synchronous motor for an electric vehicle. A thesis is a report that conveys the used theoretical approach and the experimental results on a specific problem in a specific area. A thesis could also develop a purely theoretical approach to a topic. It is my aim as the author to present these findings and theoretical approaches clearly and effectively with this concise report. Never Say Never! This is the phrase I have always referred to and it even appears on my screensaver. When I started my doctoral study at KTH, my plan was to write my doctoral dissertation directly without taking the licentiate examination. Well, as I am now writing the preface of my licentiate thesis, my thought has obviously changed through out the duration of the project work. A good friend of mine, who has a PhD degree in Physics himself, once told me that working on a doctoral degree is just like walking through a long dark tunnel. The light is gradually diminished as you enter the tunnel and the time you finally get a glimpse of the light again is when you almost reach the other side. Not surprisingly, it is often that one feels he/she is complete lost. I, personally, was experiencing this miserable feeling during the stretch. I am glad that I can use this licentiate thesis to summarize on how much I have progressed thus far and to benchmark where I am going. Just like a candle light in the middle of the darkness, my spirit is rejuvenated. I am truly grateful to those who assist me in lighting many small but necessary candles along the way. Indeed, 1% of aspiration and 99% of inspirations. i AAbbssttrraacctt This thesis presents the study and the design analysis of a permanent magnet synchronous motor (PMSM) for the traction application of an electric vehicle. An existing induction traction motor for an electric forklift benchmarks the expected performances of the proposed PMSM design. Further, the possibility of using the identical stator as the one used in the induction motor is explored for the fast prototyping. The prototype motor is expected to be field-weakened and to have a constant power speed range (CPSR) of 2.5 to 3. A design approach based on the CPSR contour plot in an interior permanent magnet (IPM) parameter plane is derived to obtain the possible designs that meet all the design specifications and the targeted CPSR. This study provides the possible alternative designs for the subsequent future prototype motors. An analytical approach to estimate the iron loss in PM synchronous machines is developed and included in the design procedure. The proposed technique is based on predicting the flux density waveforms in the various regions of the machine. The model can be applied at any specified load condition, including the field-weakening operation region. This model can be ultimately embedded in the design process for a routine use in loss estimations. The first prototype motor with an inset permanent magnet rotor has been built and the available measurements are used to validate the design performance. In particular, the thermal analyses based both on the lumped-circuit approach and the numerical method are compared with the measured results. A second and possibly a third prototype motor targeting a wider and higher performance will be carried out in the continuing phase of the project. Keywords: Constant Power Speed Range, Electric Vehicles, Field-weakening, Reference Flux Linkage, Iron Loss, Permanent Magnet Synchronous Motor, Thermal Analysis iii AAcckknnoowwlleeddggeemmeennttss To my project leader at PMD, Dr. Juliette Soulard, for everything, and I mean EVERYTHING. To my supervisor, Prof. Chandur Sadarangani, for his guidance and impressive broad vision during this thesis work. To Dr. Öystein Krogen, from Danaher Motion in Flen, for his support and encouragement throughout the thesis work. To Tech. Lic. Lars Lindberg, Mr. Thord Nilson, Tech. Lic. Anders Lindberg, from Danaher Motion in Stockholm, your invaluable assistances in helping me to solve various difficulties are greatly appreciated. To Axel, Corney, Sarah, from Danaher Motion in Flen, I will never forget your friendly attitude in guiding me throughout the time I spent in Flen for the measurements. I am truly grateful for your friendship. To Prof. J.F. Gieras, my former mentor from University of Cape Town, for introducing me to the field of electrical machines and giving me many words of wisdom for life. To Dr. D.A. Staton, from the Motor Design Ltd, for your friendship and the remarkable work you have done in our cooperation. v To Florence, my dear office-mate at EME, for having faith in me no matter how unwise I can be sometimes. You are wonderful. To Dr. Peter Thelin, the project leader at 4QT group at EME, for listening to my whining every time I hit the rock bottom. The EVS20 was my most enjoyable conference by far. To Tech. Lic. Mats Leksell, for being both a teacher and a friend to me ever since I first arrived at ETS in 1999. To Dr. W.A. Arshad, from ABB corporate research in Västerås, for being my mentor when I started at EME. Your work ethic is something I am still learning from. To Sylvain, my fellow PhD student at EME, for simply being yourself and a really good friend to me since the “Red Bull Challenge” in 2000. Let’s make this summer another blast. To Maddalena, Juan, Ruslan and Stefan, the gang, for all the joyful time we had together. You guys are truly the best. To Erik, my training buddy, I seriously don’t know what I should thank you for. Well, as long as you and I know about it, who cares! To Lilantha, my former office-mate, for having many meaningful conversations and sharing those common thoughts together. To Stephan, the ex ex-jobber at EME, for his splendid contribution to this project, but more importantly, for organizing those fantastic parties. To Freddy, the smartest Norwegian at EME, for helping me to look at problems from a different angle with your sometimes annoying but proof-to-be right questions. To Peter, the system administrator at ETS, for patiently assisting me to solve any computer issue whenever it is needed. To the entire staff member at EME, for making EME the best place to study at. vi To Marcus, Eva, Jonas, Robert, Anna, Sofia, Disala, Erica, Lisa, Patrik, Helena, Benedicte, Sarah, Germun, Tommie, Patrik, Cecilia, Jens, Roger, for your friendship. To my parents and families, for giving me your endless love throughout. I love you all! Finally, last but not least, to Joanna, my full time girlfriend for so many years, for many years of encouragement and understanding. Yung-kang Chin Stockholm Spring 2004 vii CCoonntteennttss Preface i Abstract iii Acknowledgements v Table of Contents ix List of Illustrations xiii 1 Introduction 1 1.1 Background 1 1.2 Objective of the Project 2 1.3 Objective of the Thesis 2 1.4 List of Publications 2 1.5 Thesis Outline 6 2 Field-Weakening Operation of PM Motors 7 2.1 Principle of Field-Weakening Operation 7 2.2 Field-weakening Operation of Permanent Magnet Motors 8 2.3 Reviewed Literatures 9 2.4 Influences of Parameters on Field-weakening Performances 11 2.5 IPM Parameter Plane 12 ix 2.6 Summary 16 3 Design Procedure 17 3.1 Design Specifications and Given Information 17 3.2 Design Procedure 20 3.2.1 Variable Parameters 20 3.2.2 Reference Flux Linkage (RFL) 20 3.2.3 Example on Obtaining a Possible Design for a Specific CPSR 25 3.2.4 On the Magnet Coverage 29 3.3 Investigations on Different Design Solutions 31 3.3.1 Designs with a Targeted CPSR of 2 or 3 31 3.4 Summary 34 4 Analytical Iron Loss Model 35 4.1 Iron Loss in PM Motors 35 4.2 Reviewed Literatures 36 4.3 Strategy 37 4.4 Analytical Model Developed 38 4.4.1 Flux Density Waveform 38 4.4.2 Calculation of Stator Iron Losses 44 4.5 Summary and Further Improvement 48 5 Prototype Motor and Measurements 49 5.1 Prototype Motor 49 5.2 Measurements 51 5.2.1 Induced back EMF 51 5.2.2 Inductances in d- and q- axis direction 53 5.2.3 Thermal Analysis 56 5.2.3.1 Lumped-circuit approach and numerical analysis 56 5.2.3.2 Measurements 59 5.3 Summary 65 x 6 Conclusions and Future Work 67 References 71 Glossary of Symbols, Subscripts and Acronyms 75 Appendix A. Leakage Inductance Approximations 79 B. Per-unit System 81 Paper I Modeling of Iron Losses in Permanent Magnet Synchronous Motors with Field-weakening Capability for Electric Vehicles 85 Errata on Paper II 97 Paper II A Theoretical Study on Permanent Magnet Synchronous Motors for Electric Vehicles 99 Paper III Thermal Analysis – Lumped-Circuit Model and Finite Element Analysis 107 Errata on Paper IV 115 Paper IV A Permanent Magnet Synchronous Motor for Traction Applications of Electric Vehicles 117 Paper V Thermal Analysis of a Permanent Magnet Synchronous Traction Motor 127 xi LLiisstt ooff IIlllluussttrraattiioonnss Figures Chapter 2 Figure 2.1 Ideal field-weakening characteristics: (a) Torque characteristics; (b) Power versus speed curve.
Recommended publications
  • Single-Phase Line Start Permanent Magnet Synchronous Motor with Skewed Stator*
    POWER ELECTRONICS AND DRIVES Vol. 1(36), No. 2, 2016 DOI: 10.5277/PED160212 SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* MACIEJ GWOŹDZIEWICZ, JAN ZAWILAK Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: [email protected], [email protected] Abstract: The article deals with single-phase line start permanent magnet synchronous motor with skewed stator. Constructions of two physical motor models are presented. Results of the motors run- ning properties are analysed. Keywords: single-phase motor, permanent magnet, skew, vibration 1. INTRODUCTION Single-phase induction motors almost always have skewed rotors. It is a simple and effective solution in limitation of the motor vibration, noise and torque pulsation. In the case of line start permanent magnet synchronous motors skewed rotor is ex- tremely difficult to manufacture due to interior permanent magnets. Skewed stator is less complicated in comparison with skewed rotor [3], [4], [7], [8]. During many tests of single-phase line start permanent magnet synchronous motor physical models The authors noticed that vibration is one of the main drawbacks of these motors [1], [2]. It prompted them to construct and build a single-phase line start permanent magnet motor with skewed stator. 2. MOTOR CONSTRUCTION Two dimensional field-circuit models of the single-phase line start permanent magnet synchronous motor were applied in Maxwell software. The models are based on the mass production single-phase induction motor Seh 80-2B type: rated power Pn = 1.1 kW, rated voltage Un = 230 V, rated frequency fn = 50 Hz, number of pole * Manuscript received: September 7, 2016; accepted: December 7, 2016.
    [Show full text]
  • Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
    Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control.
    [Show full text]
  • Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
    THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance.
    [Show full text]
  • Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
    Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2].
    [Show full text]
  • Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision
    actuators Article Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision Zongxia Jiao 1,2,3, Yuan Cao 1, Liang Yan 1,2,3,*, Xinglu Li 1,3, Lu Zhang 1,2,3 and Yang Li 1,3 1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; [email protected] (Z.J.); [email protected] (Y.C.); [email protected] (X.L.); [email protected] (L.Z.); [email protected] (Y.L.) 2 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China * Correspondence: [email protected] Abstract: Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking perfor- mance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking Citation: Jiao, Z.; Cao, Y.; Yan, L.; Li, precision of PMLOSM.
    [Show full text]
  • Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms
    energies Article Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms Myeong-Hwan Hwang 1,2, Jong-Ho Han 1, Dong-Hyun Kim 1 and Hyun-Rok Cha 1,* 1 EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 61012, Korea; [email protected] (M.-H.H.); [email protected] (J.-H.H.); [email protected] (D.-H.K.) 2 Department of Electrical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-gu, Gwangju 61186, Korea * Correspondence: [email protected]; Tel.: +82-62-600-6212 Received: 7 September 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: The recent increase in the use of permanent magnet rotor motors underlines the importance of designing a rotor with an interior permanent magnet (IPM) structure, high power, and high efficiency. This study analyzed the rotor shapes of IPM motors for electric vehicles. Five types of motor rotors for automobiles were analyzed, including two hybrid vehicles. In order to minimize the number of variables in the analysis, the size of the motor stators was fixed and only the rotor shapes were modified to compare torque, torque ripple, efficiency and back-electromotive voltage. When the motor properties were compared as a function of rotor shape, the rotor shape with the smallest magnet volume exhibited excellent results for torque, efficiency and torque ripple. Keywords: traction motor; electric vehicle; interior permanent magnet; vehicle motor; electromagnetic field analysis; cogging torque 1. Introduction Various regulations in the car industry are being introduced to respond to environmental changes caused by global warming [1]; for example, electrically powered powertrains have been developed to reduce exhausted gas and improve the power efficiency of vehicles.
    [Show full text]
  • Chapter # 2 Cylindrical Synchronous Generator and Motor 1
    Benha University Electrical Engineering Department Faculty of Engineering at Shubra Electric Machines II Chapter # 2 Cylindrical Synchronous Generator and Motor 1. Introduction Synchronous machines are named by this name as their speed is directly related to the line frequency. Synchronous machines may be operated either as motor or generator. Synchronous generators are called alternators. Synchronous motors are used mainly for power factor correction when operate at no load. Synchronous machines are usually constructed with stationary stator (armature) windings that carrying the current and rotating rotor (field) winding that create the magnetic flux. This flux is produced by DC current from a separate source (e.g. DC shunt generator). 2. Types of Synchronous Generators The type of synchronous generators depends on the prime mover type as: a) Steam turbines: synchronous generators that driven by steam turbine are high speed machines and known as turbo alternators. The maximum rotor speed is 3600 rpm corresponding 60 Hz and two poles. b) Hydraulic turbines: synchronous generators that driven by water turbine are with speed varies from 50 to 500 rpm. The type of turbine to be used depends on the water head. For water head of 400m, Pelton wheel turbines are used. But for water head up to 350 m, Francis Turbines are used. For water head up to 50 m, Kaplan Turbines are used. 1 Chapter #2 Cylindrical Synchronous Machines Dr. Ahmed Mustafa Hussein Benha University Electrical Engineering Department Faculty of Engineering at Shubra Electric Machines II c) Diesel Engines: they are used as prime movers for synchronous generator of small ratings. For the type a) and c) the rotor shape is cylindrical as shown in Fig.
    [Show full text]
  • A Comparative Study of Two Permanent Magnet Motors Structures with Interior and Exterior Rotor
    Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 A Comparative Study of Two Permanent Magnet Motors Structures with Interior and Exterior Rotor Mohamed Chaieb 1, Naourez Ben Hadj 2, Jalila Kaouthar Kammoun 3, and Rafik Neji 4 1 Electrical Engineering Department, University of Sfax, [email protected] 2 Electrical Engineering Department, University of Sfax, [email protected] 3 Electrical Engineering Department, University of Sfax, [email protected] 4 Electrical Engineering Department, University of Sfax, [email protected] Abstract Currently, the permanent magnet motors PMM represent an attractive solution in the electric traction field, thanks to their higher performances than other electric motors. In this context, this work represents an analytical study and validation by the finite element method of two configurations, the radial flux permanent magnet syn- chronous motors with exterior rotor PMSMER and with interior rotor PMSMIR. This paper is divided into two sections: In the first section, we represent the analytical study based on electromagnetic law of the two structures PMSMER and PMSMIR. In the second section, we represent a comparative study of the two structure perform- ances. Keywords 2. MODELLING OF THE TWO PMM STRUC- permanent magnet motors design, radial flux, finite TURES element method, modelling, performance 2.1 Structural data The motors structure allowing the determination of 1. INTRODUCTION the studied geometry is based on three relationships. Considering the large variety of electric motors, such The ratio β is the relationship between the magnet an- as asynchronous motors, synchronous motors with gular width La and the pole-pitch Lp.
    [Show full text]
  • Premium Efficiency Motor Selection and Application Guide
    ADVANCED MANUFACTURING OFFICE PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE A HANDBOOK FOR INDUSTRY DISCLAIMER This publication was prepared by the Washington State University Energy Program for the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Neither the United States, the U.S. Department of Energy, the Copper Development Association, the Washington State University Energy Program, the National Electrical Manufacturers Association, nor any of their contractors, subcontractors, or employees makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process described in this guidebook. In addition, no endorsement is implied by the use of examples, figures, or courtesy photos. PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE ACKNOWLEDGMENTS The Premium Efficiency Motor Selection and Application Guide and its companion publication, Continuous Energy Improvement in Motor-Driven Systems, have been developed by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) with support from the Copper Development Association (CDA). The authors extend thanks to the EERE Advanced Manufacturing Office (AMO) and to Rolf Butters, Scott Hutchins, and Paul Scheihing for their support and guidance. Thanks are also due to Prakash Rao of Lawrence Berkeley National Laboratory (LBNL), Rolf Butters (AMO and Vestal Tutterow of PPC for reviewing and providing publication comments. The primary authors of this publication are Gilbert A. McCoy and John G. Douglass of the Washington State University (WSU) Energy Program. Helpful reviews and comments were provided by Rob Penney of WSU; Vestal Tutterow of Project Performance Corporation, and Richard deFay, Project Manager, Sustainable Energy with CDA.
    [Show full text]
  • The Most Important Maglev Applications
    Hindawi Publishing Corporation Journal of Engineering Volume 2013, Article ID 537986, 19 pages http://dx.doi.org/10.1155/2013/537986 Review Article The Most Important Maglev Applications Hamid Yaghoubi Iran Maglev Technology (IMT), Tehran 1997857631, Iran Correspondence should be addressed to Hamid Yaghoubi; [email protected] Received 5 December 2012; Accepted 19 February 2013 Academic Editor: Run-Cang Sun Copyright © 2013 Hamid Yaghoubi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The name maglev is derived from magnetic levitation. Magnetic levitation is a highly advanced technology. It has various uses.The common point in all applications is the lack of contact and thus no wear and friction. This increases efficiency, reduces maintenance costs, and increases the useful life of the system. The magnetic levitation technology can be used as an efficient technology inthe various industries. There are already many countries that are attracted to maglev systems. Many systems have been proposed in different parts of the worlds. This paper tries to study the most important uses of magnetic levitation technology. The results clearly reflect that the maglev can be conveniently considered as a solution for the future engineering needs of the world. 1. Introduction Another means of using a moving magnet to circumvent Earnshaw’srule and achieve full levitation is to move the mag- In Gulliver’s Travels (1726), Jonathan Swift described the net in the presence of an electrical conductor, thereby induc- maglev island of Laputa, which was capable of achieving ing eddy currents in the conductor and associated repulsive levitation heights of several kilometers.
    [Show full text]
  • Hybrid Synchronous Motor Electromagnetic Torque Research
    MATEC Web of Conferences 19, 01026 (2014) DOI: 10.1051/matecconf/201419 01 026 C Owned by the authors, published by EDP Sciences, 2014 Hybrid synchronous motor electromagnetic torque research Elena E. Suvorkovaa, Lev K. Burulko National Research Tomsk Polytechnic University, 634050 Tomsk, Russia Abstract. Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained. 1. Introduction Present-day position is inextricably connected with developing process in all components of electric drive: electrical machines, power semiconductors and converters on its base. One of the main electric motors development directions is expanding special motors’ construction range for applying in modern competitive object-orientated systems. Electric machines prospects of promotion lead to its non-traditional usage such as hybrid synchronous motor (HSM). HSM main principles of operation make it possible to use as executive engine in a number of production plants, such as artificial fiber production [1]. Electric drive projecting involves verification and regulation method choice which are determined by main electric machine characteristics. Thus main goals of this paper are hybrid synchronous motor air-gap magnetic field research and electromagnetic torque main parts determination. 2. Problem statement HSM is a machine with stator created on basis of serial asynchronous motor and rotor consisting on two parts. The main rotor part is a reluctance machine which is 70% of active rotor length [2], the other is synchronous permanent-magnet machine which is 30% [1]. Power is developed by reluctance machine as the cheapest and simple in design, and energy of constant magnets poles is used for increasing power and improving operational characteristics.
    [Show full text]
  • Permanent Magnet Servomotor and Induction Motor Considerations
    Permanent Magnet Servomotor and Induction Motor Considerations Kollmorgen B-104 PM Brushless Servomotor at 0.4 HP Kollmorgen M-828 PM Brushless Rotor Kollmorgen B-802 PM Brushless Servomotor at 15 HP Kollmorgen B-808 PM Brushless Rotor Permanent Magnet Servomotor and Induction Motor Considerations 1 Lee Stephens, Senior Motion Control Engineer Permanent Magnet Servomotor and Induction Motor Considerations Motion long considered a mainstay of induction motors, encroachment in the area of 50 HP and greater have been seen recently for some applications by permanent magnet (PM) servomotors. These applications usually have dynamic considerations that require position-time closed loop and high accelerations. When accelerating large loads, permanent magnet servomotors can work with very high load to inertia ratios and still maintain performance requirements. Having a lower inertia typically will allow for less permanent magnet motor can result in a greater torque energy wasted within the motor. Torque (τ), is the density than an equivalent induction system. If size product of inertia (j) and rotary acceleration (α). If you matters, then perhaps a system should use one require inertia matching, ½ of your energy is wasted technology over another. Speaking of size, the inertia accelerating the motor alone. If the inertia ratio from ratio can be an important figure of merit should motor to load is large, then control schemes must be dynamic needs arise. If you are going to have high dynamic enough to prevent the larger load from driving accelerations and decelerations, the size of the rotor the motor as opposed to the motor controlling the load. will significantly increase the inertia and decrease the Tradeoffs and knowing what can be negotiated.
    [Show full text]