Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms energies Article Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms Myeong-Hwan Hwang 1,2, Jong-Ho Han 1, Dong-Hyun Kim 1 and Hyun-Rok Cha 1,* 1 EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 61012, Korea; [email protected] (M.-H.H.); [email protected] (J.-H.H.); [email protected] (D.-H.K.) 2 Department of Electrical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-gu, Gwangju 61186, Korea * Correspondence: [email protected]; Tel.: +82-62-600-6212 Received: 7 September 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: The recent increase in the use of permanent magnet rotor motors underlines the importance of designing a rotor with an interior permanent magnet (IPM) structure, high power, and high efficiency. This study analyzed the rotor shapes of IPM motors for electric vehicles. Five types of motor rotors for automobiles were analyzed, including two hybrid vehicles. In order to minimize the number of variables in the analysis, the size of the motor stators was fixed and only the rotor shapes were modified to compare torque, torque ripple, efficiency and back-electromotive voltage. When the motor properties were compared as a function of rotor shape, the rotor shape with the smallest magnet volume exhibited excellent results for torque, efficiency and torque ripple. Keywords: traction motor; electric vehicle; interior permanent magnet; vehicle motor; electromagnetic field analysis; cogging torque 1. Introduction Various regulations in the car industry are being introduced to respond to environmental changes caused by global warming [1]; for example, electrically powered powertrains have been developed to reduce exhausted gas and improve the power efficiency of vehicles. As a result, the demand for electrical vehicles, which are recognized as environmentally friendly, continues to surge [2]. Electric traction motors, which represent the most essential of technologies among this changeover, are needed owing to their wide velocity, high power density, and high efficiency [3–5]. With advances in electrical machines and recent control technologies, AC machines have become mainstream (as opposed to DC machines) and now dominated the traction machine market. Both synchronous and asynchronous AC machines are used in commercially available electric-powered vehicles. Induction machines contain the most mature manufacturing technologies, those that that have been developed over a number of decades [5,6]. Induction machine technologies are also relatively lower in cost and offer easier control. However, the conductors of the rotor increase the rotor copper losses and also the cooling requirement. The conductor usually applies to a lower operating efficiency as compared with permanent magnet synchronous machines (PMSM); therefore, the majority of automotive manufacturers are choosing appropriate PMSM for the traction motor in the vehicle [7]. Among the electric traction motors, interior permanent magnet (IPM) motors, which include rotors with embedded magnets, are increasingly being used as the driving motors for electric vehicles. The advantages of an IPM motor include its wide velocity and torque variation, high power, light weight, and energy efficiency. The most influential factor affecting the performance of IPM motors is Energies 2018, 11, 2601; doi:10.3390/en11102601 www.mdpi.com/journal/energies Energies 2018, 11, x 2 of 12 Energies 2018, 11, 2601 2 of 12 power, light weight, and energy efficiency. The most influential factor affecting the performance of IPM motors is the rotor shape. Therefore, determining an appropriate IPM rotor shape is essential forthe designing rotor shape. a highly Therefore, functional determining driving anmoto appropriater for electrical IPM vehicles rotor shape (EVs) is essential[8–11]. for designing a highlyAs functional the importance driving of motor IPM motors for electrical for EVs vehicles continues (EVs) to [ 8increase,–11]. various rotor structures have been Asproposed. the importance Only a few of IPMstudies motors havefor comprehensively EVs continues compare to increase,d the various rotor shapes rotor structures of IPM motors have inbeen order proposed. to establish Only a adesign few studies standard. have Accordingly, comprehensively this study compared attempted the rotor to identify shapes an of appropriate IPM motors shapein order for to an establish IPM rotor a design for standard.EVs by analyzing Accordingly, three this models study attemptedof major EV to identify motor anmanufacturers appropriate currentlyshape for anin mass IPM rotorproduction, for EVs as by well analyzing as two three hybrid models models. of major Based EV on motor the results manufacturers of this study, currently we planin mass to production,present a design as well standard as two hybrid for rotor models. shapes Based that on appropriately the results of thisreflects study, the we requirements plan to present of EVsa design [12]. standard for rotor shapes that appropriately reflects the requirements of EVs [12]. HoHowever,wever, thethe criticalcritical problemproblem is is that that analysis analysis and and improvement improvement could could waste waste both both time time and cost.and costTherefore,. Therefore, the magnet the magnet arrangement arrangement of high-power of high IPM-power rotor IPM shape rotor should shap bee should analyzed be andanalyzed developed and developedto reduce time to reduce and cost. time The and torque cost. T andhe torque rotation and speed rotation were speed analyzed were according analyzed to according rotor shape. to rotor Each shape.motor statorEach motor had the stator same had size the and same winding, size and with winding, a motor rotorwith ofa motor the same rotor size, of butthe withsame a size, different but witharrangement a different of magnetsarrangement [13]. of magnets [13]. MManyany studies of rotor shape have aim aimeded to reduce design and analysis time [1 [144]].. However, However, t thishis study focusedfocused onon timetime reduction reduction when when selecting selecting the the design design concept. concept. We believeWe believe that thethat results the results of study of studywill improve will improve design efficiencydesign efficiency by decreasing by decreasing the initial the design initial time design and enhancingtime and torque,enhancing power, torque, and power,efficiency, and depending efficiency, on depending the shape on of the IPM shape rotor. of IPM rotor. The remainder of this paper is organized as follows. T Thehe m mainain parameter parameterss of of the the IPM motor rotor andand fivefive analysisanalysis rotor rotor models models are are introduced introduced in Sectionin Section2, followed 2, followed by a by comparison a comparison of the of basic the basiccharacteristics characteristics of each of rotor each inrotor Section in Section3. The torque 3. The andtorque efficiency and efficiency of rotors areof rotors analyzed, are analyzed, in Section 4in. SectionFinally, 4. conclusions Finally, conclusions are given inare Section given5 in Section 5 22.. Analysis Analysis Model Modelss of IPM Motor Motorss To analyze the the characteristics characteristics of of IPM IPM m motorsotors as as a afunction function of ofrotor rotor shape, shape, the the outer outer diameter diameter of eachof each rotor rotor was was fixed fixed to ensure to ensure the thesame same conditions conditions and and to minimize to minimize the thenumber number of variables of variables.. In addition,In addition, the the magnet magnet arrangement arrangement of ofthe the rotor rotor was was adjusted adjusted to to standardize standardize the the size size and and shape shape of of the the stator and the windings windings so that that the the properties properties were were analyzed analyzed under under similar similar conditions. conditions. To To en ensuresure the accuracy of the analysis using different magnet arrangements and rotor shapes, the rotor shapes and ratios typical of actual cars were maintained as much as possible. Rotor shapes,shapes, shown shown in Figurein Fig1ure, are 1, general are general shapes, andshapes, this studyand analyzedthis study each analyzed characteristic each characteristicdepending on depending shape. Additionally, on shape. Figure Additionally,1d,e was Figure included 1d,e and w analyzed,as included because and analyzed, the V-shape because has a thesmaller V-shape magnet has volumea smaller than magnet other volume general than shapes other [15 general]. shapes [15]. (a) (b) (c) (d) (e) Figure 1. InteriorInterior Permanent Permanent Magnet Magnet Synchronous Synchronous Motor Motor Design Design Trend: Trend: ( (aa)) V V-shaped-shaped rotor from manufacturer T; ((bb)) doubledouble magnetmagnet shapeshape from from manufacturer manufacturer V; V; (c ()c delta) delta shape shape from from manufacturer manufacturer V; V;(d) ( hybridd) hybrid delta delta shape shape based based on the on Vthe shape V shape from from both manufacturerboth manufacturer T and T manufacturer and manufacturer N; (e) hybridN; (e) hybriddouble double V shape V from shape both from manufacturer both manufacturer T and manufacturer T and manufacturer V. These fiveV. These shapes five have shapes been previouslyhave been previouslyanalyzed [16 analyzed]. [16]. 22.1..1. S Statortator M Modelodel for A Analyzingnalyzing Rotor P Propertiesroperties Table 11 presents presents thethe specificationsspecifications
Recommended publications
  • Appendix B: Soft Starter Application Considerations BBB
    AAPPENDIXPPENDIX APPENDIX B: SOFT STARTER APPLICATION CONSIDERATIONS BBB TABLE OF CONTENTS Appendix B: Soft Starter Application Considerations �� � � � � � � � � � � � � � � � � � � � � � � B–1 B�1 – Motor Suitability and Associated Considerations� � � � � � � � � � � � � � � � � � � � � B–2 B�1�1 – Suitability� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–2 B�1�2 – Induction Motor Characteristics �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–2 B�1�3 – Rating� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–2 B�1�4 – Maximum Motor Cable Length� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�5 – Power Factor Correction Capacitors �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�6 – Lightly Loaded Small Motors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�7 – Motors Installed with Integral Brakes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�8 – Older Motors� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�9 – Wound-rotor or Slip-ring Motors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�10 – Enclosures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–3 B�1�11 – Efficiency �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B–4 B�1�12 – High-Efficiency Motors � � � � � �
    [Show full text]
  • Parameters Effects on Force in Tubular Linear Induction Motors with Blocked Rotor
    Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp92-97) Parameters Effects on Force in Tubular Linear Induction Motors with Blocked Rotor REZA HAGHMARAM(1,2), ABBAS SHOULAIE(2) (1) Department of Electrical Engineering, Imam Hosein University, Babaie Highway, Tehran (2) Department of Electrical Engineering, Iran University of Science & Technology, Narmak, Tehran IRAN Abstract: This paper is concerned with the study of several parameters effects on longitudinal force applied on the rotor in the generator driven air-core tubular linear induction motors with blocked rotor. With developing the motor modeling by involving temperature equations in the previous computer code, we first study variations of the coils and rings temperatures and the effect of the temperature on the rotor force. In the next section, the effect of the rotor length on the rotor force is studied and it is shown that there is an almost linear relation between the rotor length and the rotor force. Finally we have given the optimum time step for solving the state equations of the motor and calculating the force. By this time step the code will have reasonable speed and accuracy. These studies can be useful for the force motors and for finding a view for dynamic state analysis of the acceleration motors. Keywords: - Air Core Tubular Linear Induction Motor, Coilgun, Linear Induction Launcher 1 Introduction the value of coils and rings currents and calculating Tubular Linear Induction Motors (TLIMs) may the gradient of mutual inductance between coils and have unique applications as electromagnetic rings, we can calculate the force applied on the launchers with very high speed and acceleration rotor [3].
    [Show full text]
  • Pulsed Rotating Machine Power Supplies for Electric Combat Vehicles
    Pulsed Rotating Machine Power Supplies for Electric Combat Vehicles W.A. Walls and M. Driga Department of Electrical and Computer Engineering The University of Texas at Austin Austin, Texas 78712 Abstract than not, these test machines were merely modified gener- ators fitted with damper bars to lower impedance suffi- As technology for hybrid-electric propulsion, electric ciently to allow brief high current pulses needed for the weapons and defensive systems are developed for future experiment at hand. The late 1970's brought continuing electric combat vehicles, pulsed rotating electric machine research in fusion power, renewed interest in electromag- technologies can be adapted and evolved to provide the netic guns and other pulsed power users in the high power, maximum benefit to these new systems. A key advantage of intermittent duty regime. Likewise, flywheels have been rotating machines is the ability to design for combined used to store kinetic energy for many applications over the requirements of energy storage and pulsed power. An addi - years. In some cases (like utility generators providing tran- tional advantage is the ease with which these machines can sient fault ride-through capability), the functions of energy be optimized to service multiple loads. storage and power generation have been combined. Continuous duty alternators can be optimized to provide Development of specialized machines that were optimized prime power energy conversion from the vehicle engine. for this type of pulsed duty was needed. In 1977, the laser This paper, however, will focus on pulsed machines that are fusion community began looking for an alternative power best suited for intermittent and pulsed loads requiring source to capacitor banks for driving laser flashlamps.
    [Show full text]
  • An Engineering Guide to Soft Starters
    An Engineering Guide to Soft Starters Contents 1 Introduction 1.1 General 1.2 Benefits of soft starters 1.3 Typical Applications 1.4 Different motor starting methods 1.5 What is the minimum start current with a soft starter? 1.6 Are all three phase soft starters the same? 2 Soft Start and Soft Stop Methods 2.1 Soft Start Methods 2.2 Stop Methods 2.3 Jog 3 Choosing Soft Starters 3.1 Three step process 3.2 Step 1 - Starter selection 3.3 Step 2 - Application selection 3.4 Step 3 - Starter sizing 3.5 AC53a Utilisation Code 3.6 AC53b Utilisation Code 3.7 Typical Motor FLCs 4 Applying Soft Starters/System Design 4.1 Do I need to use a main contactor? 4.2 What are bypass contactors? 4.3 What is an inside delta connection? 4.4 How do I replace a star/delta starter with a soft starter? 4.5 How do I use power factor correction with soft starters? 4.6 How do I ensure Type 1 circuit protection? 4.7 How do I ensure Type 2 circuit protection? 4.8 How do I select cable when installing a soft starter? 4.9 What is the maximum length of cable run between a soft starter and the motor? 4.10 How do two-speed motors work and can I use a soft starter to control them? 4.11 Can one soft starter control multiple motors separately for sequential starting? 4.12 Can one soft starter control multiple motors for parallel starting? 4.13 Can slip-ring motors be started with a soft starter? 4.14 Can soft starters reverse the motor direction? 4.15 What is the minimum start current with a soft starter? 4.16 Can soft starters control an already rotating motor (flying load)? 4.17 Brake 4.18 What is soft braking and how is it used? 5 Digistart Soft Starter Selection 5.1 Three step process 5.2 Starter selection 5.3 Application selection 5.4 Starter sizing 1.
    [Show full text]
  • Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
    Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control.
    [Show full text]
  • Rolling Bearings and Seals in Electric Motors and Generators
    Rolling bearings and seals in electric motors and generators ® SKF, @PTITUDE, BAKER, CARB, DUOFLEX, DURATEMP, ICOS, INSOCOAT, MARLIN, MICROLOG, MONOFLEX, MULTILOG, SEAL JET, SKF EXPLORER, SYSTEM 24 and WAVE are registered trademarks of the SKF Group. © SKF Group 2013 The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein. PUB 54/P7 13459 EN · August 2013 This publication supersedes publication 5230 E and 6230 EN. Certain image(s) used under license from Shutterstock.com. 1 Rolling bearings in electric machines 1 2 Bearing systems 2 3 Seals in electric machines 3 4 Tolerances and fits 4 5 Lubrication 5 6 Bearing mounting, dis mounting and motor testing 6 7 Bearing damage and corrective actions 7 8 SKF solutions 8 Rolling bearings and seals in electric motors and generators A handbook for the industrial designer and end-user 2 Foreword This SKF applications, lubrication and maintenance handbook for bearings and seals in electric motors and generators has been devel oped with various industry specialists in mind. For designers of electric machines1), this handbook provides the information needed to optimize a variety of bearing arrangements. For specialists working in various industries using electric machines, there are recommendations on how to maximize bearing service life from appropriate mounting, mainten ance and lubrication.
    [Show full text]
  • Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
    THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance.
    [Show full text]
  • Electric Motors
    SPECIFICATION GUIDE ELECTRIC MOTORS Motors | Automation | Energy | Transmission & Distribution | Coatings www.weg.net Specification of Electric Motors WEG, which began in 1961 as a small factory of electric motors, has become a leading global supplier of electronic products for different segments. The search for excellence has resulted in the diversification of the business, adding to the electric motors products which provide from power generation to more efficient means of use. This diversification has been a solid foundation for the growth of the company which, for offering more complete solutions, currently serves its customers in a dedicated manner. Even after more than 50 years of history and continued growth, electric motors remain one of WEG’s main products. Aligned with the market, WEG develops its portfolio of products always thinking about the special features of each application. In order to provide the basis for the success of WEG Motors, this simple and objective guide was created to help those who buy, sell and work with such equipment. It brings important information for the operation of various types of motors. Enjoy your reading. Specification of Electric Motors 3 www.weg.net Table of Contents 1. Fundamental Concepts ......................................6 4. Acceleration Characteristics ..........................25 1.1 Electric Motors ...................................................6 4.1 Torque ..............................................................25 1.2 Basic Concepts ..................................................7
    [Show full text]
  • Equating a Car Alternator with the Generated Voltage Equation by Ervin Carrillo
    Equating a Car Alternator with the Generated Voltage Equation By Ervin Carrillo Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo 2012 © 2012 Carrillo TABLE OF CONTENTS Section Page Acknowledgments ......................................................................................................... i Abstract ........................................................................................................................... ii I. Introduction ........................................................................................................ 1 II. Background ......................................................................................................... 2 III. Requirements ...................................................................................................... 8 IV. Obtaining the new Generated Voltage equation and Rewinding .................................................................................................................................... 9 V. Conclusion and recommendations .................................................................. 31 VI. Bibliography ........................................................................................................ 32 Appendices A. Parts list and cost ...................................................................................................................... 33 LIST OF FIGURES AND TABLE Section Page Figure 2-1: Removed drive pulley from rotor shaft [3]……………………………………………. 4.
    [Show full text]
  • Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
    Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2].
    [Show full text]
  • Motor Starting Fundamentals
    Application Guidance Notes: Technical Information from Cummins Generator Technologies AGN 090 – Motor Starting Fundamentals INTRODUCTION There are a number of aspects to be considered regarding the electrical supply required for starting a motor. Guidance is offered for Motor Starting applications, because ‘Motor Starting’ continues to create technical problems for Generating Set manufacturers. This guidance is intended to assist Generating Set manufacturers when they discuss with their customers, the characteristics of the motor or motors to be started. The information on the motor will determine the type and size of alternator that is nominated and assist in the selection of a suitable Generating Set. MOTOR DESIGN FUNDAMENTALS To help with identifying the information required for alternator sizing purposes, it is necessary to understand the basic design of an induction motor. Induction Motor Basics Motors are part of the family of Rotating Electrical Machines (REMs). The industry standard for REM's is IEC 60034. This international standard consists of many parts covering all aspects of performance from efficiency through to Duty Type and includes sections on ratings, protection, noise, vibration etc. Enclosure protection design can be from IP22 through to a totally enclosed design rated at IP55. For further information, refer to AGN066 – Alternator IP Protection. AGN 090 ISSUE B/1/11 Rotor The cylindrical rotor has a cast-in aluminum 'squirrel-cage' with round /oval bars running axially just below the surface of the cylindrically shaped, laminated steel constructed rotor core assembly. The aluminum cage-bars are circumferentially equi-spaced around the rotor, with the number of such bars being decided by a design relationship with stator winding's number of poles.
    [Show full text]
  • Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision
    actuators Article Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision Zongxia Jiao 1,2,3, Yuan Cao 1, Liang Yan 1,2,3,*, Xinglu Li 1,3, Lu Zhang 1,2,3 and Yang Li 1,3 1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; [email protected] (Z.J.); [email protected] (Y.C.); [email protected] (X.L.); [email protected] (L.Z.); [email protected] (Y.L.) 2 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China * Correspondence: [email protected] Abstract: Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking perfor- mance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking Citation: Jiao, Z.; Cao, Y.; Yan, L.; Li, precision of PMLOSM.
    [Show full text]