Permanent Magnet Servomotor and Induction Motor Considerations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Control of DC Servomotor
Control of DC Servomotor Report submitted in partial fulfilment of the requirement to the degree of B.SC In Electrical and Electronic Engineering Under the supervision of Dr. Abdarahman Ali Karrar By Mohammed Sami Hassan Elhakim To Department of Electrical and Electronic Engineering University of Khartoum July 2008 Dedication I would like to take this opportunity to write these humble words that are unworthy of expressing my deepest gratitude for all those who made this possible. First of all I would like to thank god for my general existence and everything else around and within me. Second I would like to thank my beloved parents(Sami & Sawsan), my brothers (Tarig & Hassan), and my sister (Latifa), thank you so much for your support, guidance and care, you were always there to make me feel better and encourage me. I would like also to thanks all my friends inside and out Khartoum university, thank you for your patients tolerance and understanding, for your endless love that has stretched so far, for easing my pain and pulling me through. A special thanks to my partner Muzaab Hashiem without his help and advice i won’t be able to do what i did, thank you for being an ideal partner, friend and bother. Last but not the least i would like to thank my supervisor Dr. Karar and all those who helped me throughout this project, thank you for filling my mind with this rich knowledge. Mohammed Sami Hassan Elhakim. I Acknowledgement The first word goes to God the Almighty for bringing me to this world and guiding me as i reached this stage in my life and for making me live and see this work. -
Direct Torque Control of Induction Motors
DIRECT TORQUE CONTROL FOR INDUCTION MOTOR DRIVES MAIN FEATURES OF DTC · Decoupled control of torque and flux · Absence of mechanical transducers · Current regulator, PWM pulse generation, PI control of flux and torque and co-ordinate transformation are not required · Very simple control scheme and low computational time · Reduced parameter sensitivity BLOCK DIAGRAM OF DTC SCHEME + _ s* s j s + Djs _ Voltage Vector s * T + j s DT Selection _ T S S S s Stator a b c Torque j s s E Flux vs 2 Estimator Estimator 3 s is 2 i b i a 3 Induction Motor In principle the DTC method selects one of the six nonzero and two zero voltage vectors of the inverter on the basis of the instantaneous errors in torque and stator flux magnitude. MAIN TOPICS Þ Space vector representation Þ Fundamental concept of DTC Þ Rotor flux reference Þ Voltage vector selection criteria Þ Amplitude of flux and torque hysteresis band Þ Direct self control (DSC) Þ SVM applied to DTC Þ Flux estimation at low speed Þ Sensitivity to parameter variations and current sensor offsets Þ Conclusions INVERTER OUTPUT VOLTAGE VECTORS I Sw1 Sw3 Sw5 E a b c Sw2 Sw4 Sw6 Voltage-source inverter (VSI) For each possible switching configuration, the output voltages can be represented in terms of space vectors, according to the following equation æ 2p 4p ö s 2 j j v = ç v + v e 3 + v e 3 ÷ s ç a b c ÷ 3 è ø where va, vb and vc are phase voltages. -
Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control. -
The Fundamentals of Ac Electric Induction Motor Design and Application
THE FUNDAMENTALS OF AC ELECTRIC INDUCTION MOTOR DESIGN AND APPLICATION by Edward J. Thornton Electrical Consultant E. I. du Pont de Nemours Houston, Texas and J. Kirk Armintor Senior Account Sales Engineer Rockwell Automation The Woodlands, Texas Edward J. (Ed) Thornton is an Electrical Electrical Mechanical Consultant in the Electrical Technology Coupling System Field System Consulting Group in Engineering at DuPont, in Houston, Texas. His specialty is the design, operation, and maintenance of electric power distribution systems and large motor installations. He has 20 years E , I T , w of consulting experience with DuPont. Mr. Thornton received his B.S. degree Figure 1. Block Representation of Energy Conversion for Motors. (Electrical Engineering, 1978) from Virginia Polytechnic Institute and State University. The coupling magnetic field is key to the operation of electrical He is a registered Professional Engineer in the State of Texas. apparatus such as induction motors. The fundamental laws associated with the relationship between electricity and magnetism were derived from experiments conducted by several key scientists J. Kirk Armintor is a Senior Account in the 1800s. Sales Engineer in the Rockwell Automation Houston District Office, in The Woodlands, Basic Design and Theory of Operation Texas. He has 32 years’ experience with The alternating current (AC) induction motor is one of the most motor applications in the petroleum, rugged and most widely used machines in industry. There are two chemical, paper, and pipeline industries. major components of an AC induction motor. The stationary or He has authored technical papers on motor static component is the stator. The rotating component is the rotor. -
Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance. -
Abstract Controlling Ac Motor Using Arduino
ABSTRACT CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER Nithesh Reddy Nannuri, M.S. Department of Electrical Engineering Northern Illinois University, 2014 Donald S Zinger, Director Space vector modulation (SVM) is a technique used for generating alternating current waveforms to control pulse width modulation signals (PWM). It provides better results of PWM signals compared to other techniques. CORDIC algorithm calculates hyperbolic and trigonometric functions of sine, cosine, magnitude and phase using bit shift, addition and multiplication operations. This thesis implements SVM with Arduino microcontroller using CORDIC algorithm. This algorithm is used to calculate the PWM timing signals which are used to control the motor. Comparison of the time taken to calculate sinusoidal signal using Arduino and CORDIC algorithm was also done. NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS DECEMBER 2014 CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER BY NITHESH REDDY NANNURI ©2014 Nithesh Reddy Nannuri A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL ENGINEERING Thesis Director: Dr. Donald S Zinger ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Donald S. Zinger for his continuous support and guidance in this thesis work as well as throughout my graduate study. I would like to thank Dr. Martin Kocanda and Dr. Peng-Yung Woo for serving as members of my thesis committee. I would like to thank my family for their unconditional love, continuous support, enduring patience and inspiring words. Finally, I would like to thank my friends and everyone who has directly or indirectly helped me for their cooperation in completing the thesis. -
Electric Motors
SPECIFICATION GUIDE ELECTRIC MOTORS Motors | Automation | Energy | Transmission & Distribution | Coatings www.weg.net Specification of Electric Motors WEG, which began in 1961 as a small factory of electric motors, has become a leading global supplier of electronic products for different segments. The search for excellence has resulted in the diversification of the business, adding to the electric motors products which provide from power generation to more efficient means of use. This diversification has been a solid foundation for the growth of the company which, for offering more complete solutions, currently serves its customers in a dedicated manner. Even after more than 50 years of history and continued growth, electric motors remain one of WEG’s main products. Aligned with the market, WEG develops its portfolio of products always thinking about the special features of each application. In order to provide the basis for the success of WEG Motors, this simple and objective guide was created to help those who buy, sell and work with such equipment. It brings important information for the operation of various types of motors. Enjoy your reading. Specification of Electric Motors 3 www.weg.net Table of Contents 1. Fundamental Concepts ......................................6 4. Acceleration Characteristics ..........................25 1.1 Electric Motors ...................................................6 4.1 Torque ..............................................................25 1.2 Basic Concepts ..................................................7 -
DC Servo Motor Modeling
MODELING DC SERVOMOTORS CONTROL SYSTEMS TECH NOTE © Dr. Russ Meier, MSOE INTRODUCTION A DC motor is an actuator that converts electrical energy to mechanical rotation using the principles of electromagnetism. The circuit symbol for a DC motor is shown in Figure 1. + Va M - Figure 1: Circuit symbol for a DC servomotor The learning objectives of this technical note are: 1. Draw the equivalent DC servomotor circuit theory model. 2. State the equations of motion used to derive the electromechanical transfer function in the time domain and the s-domain. 3. Draw the DC servomotor signal block diagram. 4. Derive the DC servomotor electromechanical transfer function. CIRCUIT THEORY MODEL The circuit shown in Figure 2 models the DC servomotor. Note that an armature control current is created when the armature control voltage, Va, energizes the motor. The current flow through a series-connected Ra La + + Tm Va Vb R θ m - - Figure 2: DC servomotor circuit theory model armature resistance, an armature inductance, and the rotational component (the rotor) of the motor. The rotor shaft is typically drawn to the right with the torque (Tm) and angular displacement (θm) variables shown. The motor transfer function is the ratio of angular displacement to armature voltage. Figure 3: The DC servomotor transfer function EQUATIONS OF MOTION Three equations of motion are fundamental to the derivation of the transfer function. Relationships between torque and current, voltage and angular displacement, and torque and system inertias are used. Torque is proportional to the armature current. The constant of proportionality is called the torque constant and is given the symbol Kt. -
Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2]. -
Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision
actuators Article Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision Zongxia Jiao 1,2,3, Yuan Cao 1, Liang Yan 1,2,3,*, Xinglu Li 1,3, Lu Zhang 1,2,3 and Yang Li 1,3 1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; [email protected] (Z.J.); [email protected] (Y.C.); [email protected] (X.L.); [email protected] (L.Z.); [email protected] (Y.L.) 2 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China * Correspondence: [email protected] Abstract: Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking perfor- mance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking Citation: Jiao, Z.; Cao, Y.; Yan, L.; Li, precision of PMLOSM. -
Direct Drive Dc Torque Servo Motors
DIRECT DRIVE DC TORQUE SERVO MOTORS QT- Series Rare Earth Magnet Motors DIRECT DRIVE DC SERVO MOTORS The Direct Drive DC Torque motor is a servo actuator which can be directly attached to the load it drives. It has a permanent magnet (PM) field and a wound armature which act together to convert electrical power to torque. This torque can then be utilized in positioning or speed control systems. In general, torque motors are deigned for three different types of operation: » High stall torque (“stand-still” operation) for positioning systems » High torque at low speeds for speed control systems » Optimum torque at high speed for positioning, rate, or tensioning systems SUPERIOR QUALITY With the widest range of standard and custom motion solutions, we collaborate with you to deploy rugged, battle-worthy systems engineered and built to meet your singular requirements. Kollmorgen provides direct drive servo motor solutions for the following applications: » Weapons stations and gun turrets » Missile guidance and precision-guided munitions » Radar pedestals and tracking stations » Unmanned ground, aerial and undersea vehicles » Ground vehicles and sea systems » Aircraft and spacecraft systems » Camera gimbals » IR countermeasure platforms » Laser weapon platforms QT- Series D irect Drive DC Servo Motors Advantages of Direct Drive DC Torque Motors Direct drive torque motors are particularly suited for servo system applications where it is desirable to minimize size, weight, power and response time, and to maximize rate and position accuracies. Frameless motors range from 28.7mm (1.13in) OD weighing 1.4 ounces (.0875 lbs) to a 4067 N-m (3000 lb-ft) unit with a 1067mm (42in) OD and a 660.4mm (26in) open bore ID. -
Improvement of Electromagnetic Railgun Barrel Performance and Lifetime By
IMPROVEMENT OF ELECTROMAGNETIC RAILGUN BARREL PERFORMANCE AND LIFETIME BY METHOD OF INTERFACES AND AUGMENTED PROJECTILES A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Aleksey Pavlov June 2013 c 2013 Aleksey Pavlov ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Improvement of Electromagnetic Rail- gun Barrel Performance and Lifetime by Method of Interfaces and Augmented Pro- jectiles AUTHOR: Aleksey Pavlov DATE SUBMITTED: June 2013 COMMITTEE CHAIR: Kira Abercromby, Ph.D., Associate Professor, Aerospace Engineering COMMITTEE MEMBER: Eric Mehiel, Ph.D., Associate Professor, Aerospace Engineering COMMITTEE MEMBER: Vladimir Prodanov, Ph.D., Assistant Professor, Electrical Engineering COMMITTEE MEMBER: Thomas Guttierez, Ph.D., Associate Professor, Physics iii Abstract Improvement of Electromagnetic Railgun Barrel Performance and Lifetime by Method of Interfaces and Augmented Projectiles Aleksey Pavlov Several methods of increasing railgun barrel performance and lifetime are investigated. These include two different barrel-projectile interface coatings: a solid graphite coating and a liquid eutectic indium-gallium alloy coating. These coatings are characterized and their usability in a railgun application is evaluated. A new type of projectile, in which the electrical conductivity varies as a function of position in order to condition current flow, is proposed and simulated with FEA software. The graphite coating was found to measurably reduce the forces of friction inside the bore but was so thin that it did not improve contact. The added contact resistance of the graphite was measured and gauged to not be problematic on larger scale railguns. The liquid metal was found to greatly improve contact and not introduce extra resistance but its hazardous nature and tremendous cost detracted from its usability.