Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains

Total Page:16

File Type:pdf, Size:1020Kb

Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains energies Article Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains Marcel Torrent 1,*, José Ignacio Perat 1 and José Antonio Jiménez 2 1 Department of Electrical Engineering (DEE), Universitat Politècnica de Catalunya UPC BARCELONATECH, EPSEVG, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Barcelona, Spain; [email protected] 2 Faculty of Civil Engineering, Universitat Politècnica de Catalunya UPC EPSEVG, Víctor Balaguer 1, 08800 Vilanova i la Geltrú, Barcelona, Spain; [email protected] * Correspondence: [email protected] Received: 15 May 2018; Accepted: 11 June 2018; Published: 13 June 2018 Abstract: In this work we proposed to study the use of permanent magnet synchronous motors (PMSM) for railway traction in the high-speed trains (HST) of Renfe Operadora (the Spanish national railway operator). Currently, induction motors (IM) are used in AVE classes 102–112 trains, so, the IM used as a traction motor in these trains has been studied and characterized by comparing the results with data provided by Renfe. A PMSM of equivalent power to the IM has been dimensioned, and different electromagnetic structures of the PMSM rotor have been evaluated. The simulation by the finite element method and analysis of the equivalent electrical circuit used in all the motors have been studied to evaluate the performance of the motors in this application. Efficiency is calculated at different operating points due to its impact on the energy consumption of railway traction. The implementation of the PMSM evaluated is recommended, mainly due to the improvements achieved in efficiency as compared with the IM currently used. Keywords: permanent magnet motors; induction motors; road vehicles; energy efficiency; traction motors 1. Introduction The use of electrical drives in electric traction for high-speed trains has evolved from DC drives to AC drives [1,2]. One of the main reasons AC drives are used is due to the evolution of power electronics applied to these drives, for example, the functional improvement of inverters and the use of vector control techniques. In addition, it is worth highlighting the lower maintenance requirements and greater reliability, as well as the high efficiency and power density offered by AC drives [3]. Among AC drives, IM was mainly used initially, but the trend in recent years has been to use PMSM, initially with excitation using coils and later with excitation using permanent magnets [4]. Examples of this evolution are the TGV trains in France, where DC drives have been used in the TGV Paris–South East (year 1981, with motors of 535 kW and power density 2.9 kg/kW), AC drives with synchronous motor of rotor wound in the TGV Atlantique (year 1989, with motors of 1130 kW and power density 1.35 kg/kW), AC drives with asynchronous motor in the Eurostar (year 1994, with motors of 1020 kW and power density 1.23 kg/kW), and AC drives with permanent magnet synchronous motor in the AGV (year 2004, with motors of 760 kW and power density 1 kg/kW). The current trend seems to indicate that in the coming years drives with PMSM will be used in the HST preferentially [5,6]. A new trend, still in the experimental phase, points to the possibility of using linear synchronous motors with permanent magnets, also incorporating superconducting materials [7]. Energies 2018, 11, 1549; doi:10.3390/en11061549 www.mdpi.com/journal/energies Energies 2018, 11, 1549 2 of 17 InEnergies the 2018 beginning, 11, x FOR PEER of the REVIEW Spanish High Speed, Renfe used salient pole synchronous2 of motors. 17 However, the trains are currently being fitted with induction traction motors. Recently, HST have been using linear synchronous motors with permanent magnets, also incorporating superconducting fitted with permanent magnet synchronous motors, just like French and Italian AGV trains. materials [7]. The PMSMsIn the beginning give high of efficiencythe Spanish and High a better Speed, power/weight Renfe used salient ratio pole (power synchronous density) motors. with higher manufacturingHowever, the and trains materials are currently cost. being Permanent fitted with magnet induction synchronous traction motors. motors Recently, [8,9] HST appear have as an interestingbeen fitted alternative with permanent for several magnet reasons, synchronous such as: motors, the elimination just like French of rotor and Italian copper AGV losses, trains. increased efficiency,The higher PMSMs power give high density, efficiency lower and rotor a better momentum power/weight of inertiaratio (power and thedensity) possibility with higher of using regenerativemanufacturing brakes and even materials at low cost. speeds. Permanent On the magnet other hand,synchronous PMSMs motors have several[8,9] appear disadvantages, as an suchinteresting as the constant alternative flux fo providedr several reasons, by the such magnets as: the and elimination high costs of rotor due copper to the losses, increased increased price of rare-earthefficiency, magnets. higher PMSMs power candensity, be classified lower rotor according momentum to magnet of inertia arrangements, and the possibility i.e., surface of using magnets, and interiorregenerative magnets brakes with even radial at low or speeds. tangential On the magnetization. other hand, PMSMs Surface-mounted have several permanentdisadvantages, magnet such as the constant flux provided by the magnets and high costs due to the increased price of rare- motors behave like synchronous motors with a cylindrical rotor, where the torque is solely obtained by earth magnets. PMSMs can be classified according to magnet arrangements, i.e., surface magnets, the interactionand interior between magnets thewith rotor radial flux or andtangential stator mag current.netization. Similar Surface to salient-mounted pole permanent synchronous magnet motors, the reluctancemotors behave torque like must synchronous be considered motors inwith interior a cylindrical permanent rotor, where magnet the motors. torque is solely obtained Thisby the work interaction studies between the alternative the rotor use flux of and a PMSM stator incurrent. place ofSimilar the IM to usedsalient in pole AVE synchronous trains of classes 102–112.motors, Initially, the reluctance the behavior torque ofmust the be IM considered currently in usedinterior was permanent analyzed magnet [10]. Parametricmotors. estimations of similarThis traction work studies motors the were alternative conducted use of when a PMSM there in wasplace aof lackthe IM of used necessary in AVE technical trains of data. The electromagneticclasses 102–112. Initially, structure the of behavior the IM was of the simulated IM currently by the used finite was element analyzed method, [10]. Parametri the operationc was analyzedestimations from of similar its equivalent traction motors circuit, were and conducted finally, the when results there from was thea lack calculations of necessary of technical model were data. The electromagnetic structure of the IM was simulated by the finite element method, the compared with actual test bench measurements of the motor. Additionally, iron and mechanical losses operation was analyzed from its equivalent circuit, and finally, the results from the calculations of were also analyzed and compared with actual measurements, and hence, the procedure of calculations model were compared with actual test bench measurements of the motor. Additionally, iron and usedmechanical in the IM waslosses verified were also in order analyzed to apply and itcompared to the PMSM. with actual measurements, and hence, the Insteadprocedure of of IM, calculations the alternative used in use the of IM a PMSMwas verified was proposed.in order to apply Three it different to the PMSM. magnet arrangements were consideredInstead of for IM, the the PMSM: alternative surface use magnets, of a PMSM and interiorwas proposed. magnets Three with different radial ormagnet tangential magnetization.arrangements The were analysis considered of thesefor the structures PMSM: surface involved magnets, the and simulation interior magnets of their with electromagnetic radial or structurestangential and applicationmagnetization. of methodsThe analysis to quantify of thesemotor structures losses. involved A power the balance simulation was of also their used to calculateelectromagnetic the efficiency structures and power and application density. of methods to quantify motor losses. A power balance Finally,was also theused functional to calculate performance the efficiency ofand the power proposed density. PMSM and the IM were compared and the Finally, the functional performance of the proposed PMSM and the IM were compared and the cost of manufacturing materials was evaluated. cost of manufacturing materials was evaluated. 2. AVE Trains Classes 102-112 2. AVE Trains Classes 102-112 The mainThe main characteristics characteristics of of AVE AVE trains trains classesclasses 102 102–112–112 are are summarized summarized in Table in Table 1. The1. The traction traction performanceperformance curve curve (by (by the the eight eight motors) motors) of of AVE AVE trainstrains classes 102 102–112–112 is isshown shown in Figure in Figure 1. 1. 250 200 150 100 Tractive effort (kN) effort Tractive 50 0 0 50 100 150 200 250 300 350 speed (km/h) FigureFigure 1. 1.Traction Traction performance performance curve of of AVE AVE trains trains classes classes 102 102–112.–112. Energies 2018, 11, 1549 3 of 17 Table 1. Characteristics of AVE trains classes 102–112. Energies 2018, 11, x FOR PEER REVIEW 3 of 17 Power 8000 kW TableVoltage–frequency 1. Characteristics of AVE trains 25 kV–50 classes Hz 102–112. Number of motors 8 No loadPower mass 8000 322 kW t VoltageLength–frequency 25 kV 200–50 m Hz MaximumNumber of speed motors 3308 km/h NumberNo load of seatsmass 322 353 t NumberLength of axes 200 21 m Maximum speed 330 km/h 3. Induction Motor Used in AVE TrainsNumber of seats 353 Number of axes 21 The nominal data of IM implemented in the above trains are given in Table2. More information about3. this Induction motor Motor can be Used found in inAVE the Trains Appendix A.
Recommended publications
  • Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
    Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control.
    [Show full text]
  • Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
    THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance.
    [Show full text]
  • Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
    Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2].
    [Show full text]
  • Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision
    actuators Article Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision Zongxia Jiao 1,2,3, Yuan Cao 1, Liang Yan 1,2,3,*, Xinglu Li 1,3, Lu Zhang 1,2,3 and Yang Li 1,3 1 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China; [email protected] (Z.J.); [email protected] (Y.C.); [email protected] (X.L.); [email protected] (L.Z.); [email protected] (Y.L.) 2 Ningbo Institute of Technology, Beihang University, Ningbo 315800, China 3 Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China * Correspondence: [email protected] Abstract: Linear motors have promising application to industrial manufacture because of their direct motion and thrust output. A permanent magnetic linear oscillating synchronous motor (PMLOSM) provides reciprocating motion which can drive a piston pump directly having advantages of high frequency, high reliability, and easy commercial manufacture. Hence, researching the tracking perfor- mance of PMLOSM is of great importance to realizing its popularization and application. Traditional PI control cannot fulfill the requirement of high tracking precision, and PMLOSM performance has high phase lag because of high control stiffness. In this paper, an advancing motivation feedforward control (AMFC), which is a combination of advancing motivation signal and PI control signal, is proposed to obtain high tracking precision of PMLOSM. The PMLOSM inserted with AMFC can provide accurate trajectory tracking at a high frequency. Compared with single PI control, AMFC can reduce the phase lag from −18 to −2.7 degrees, which shows great promotion of the tracking Citation: Jiao, Z.; Cao, Y.; Yan, L.; Li, precision of PMLOSM.
    [Show full text]
  • Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms
    energies Article Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms Myeong-Hwan Hwang 1,2, Jong-Ho Han 1, Dong-Hyun Kim 1 and Hyun-Rok Cha 1,* 1 EV Components & Materials R&D Group, Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 61012, Korea; [email protected] (M.-H.H.); [email protected] (J.-H.H.); [email protected] (D.-H.K.) 2 Department of Electrical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-gu, Gwangju 61186, Korea * Correspondence: [email protected]; Tel.: +82-62-600-6212 Received: 7 September 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: The recent increase in the use of permanent magnet rotor motors underlines the importance of designing a rotor with an interior permanent magnet (IPM) structure, high power, and high efficiency. This study analyzed the rotor shapes of IPM motors for electric vehicles. Five types of motor rotors for automobiles were analyzed, including two hybrid vehicles. In order to minimize the number of variables in the analysis, the size of the motor stators was fixed and only the rotor shapes were modified to compare torque, torque ripple, efficiency and back-electromotive voltage. When the motor properties were compared as a function of rotor shape, the rotor shape with the smallest magnet volume exhibited excellent results for torque, efficiency and torque ripple. Keywords: traction motor; electric vehicle; interior permanent magnet; vehicle motor; electromagnetic field analysis; cogging torque 1. Introduction Various regulations in the car industry are being introduced to respond to environmental changes caused by global warming [1]; for example, electrically powered powertrains have been developed to reduce exhausted gas and improve the power efficiency of vehicles.
    [Show full text]
  • A Comparative Study of Two Permanent Magnet Motors Structures with Interior and Exterior Rotor
    Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 A Comparative Study of Two Permanent Magnet Motors Structures with Interior and Exterior Rotor Mohamed Chaieb 1, Naourez Ben Hadj 2, Jalila Kaouthar Kammoun 3, and Rafik Neji 4 1 Electrical Engineering Department, University of Sfax, [email protected] 2 Electrical Engineering Department, University of Sfax, [email protected] 3 Electrical Engineering Department, University of Sfax, [email protected] 4 Electrical Engineering Department, University of Sfax, [email protected] Abstract Currently, the permanent magnet motors PMM represent an attractive solution in the electric traction field, thanks to their higher performances than other electric motors. In this context, this work represents an analytical study and validation by the finite element method of two configurations, the radial flux permanent magnet syn- chronous motors with exterior rotor PMSMER and with interior rotor PMSMIR. This paper is divided into two sections: In the first section, we represent the analytical study based on electromagnetic law of the two structures PMSMER and PMSMIR. In the second section, we represent a comparative study of the two structure perform- ances. Keywords 2. MODELLING OF THE TWO PMM STRUC- permanent magnet motors design, radial flux, finite TURES element method, modelling, performance 2.1 Structural data The motors structure allowing the determination of 1. INTRODUCTION the studied geometry is based on three relationships. Considering the large variety of electric motors, such The ratio β is the relationship between the magnet an- as asynchronous motors, synchronous motors with gular width La and the pole-pitch Lp.
    [Show full text]
  • Premium Efficiency Motor Selection and Application Guide
    ADVANCED MANUFACTURING OFFICE PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE A HANDBOOK FOR INDUSTRY DISCLAIMER This publication was prepared by the Washington State University Energy Program for the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Neither the United States, the U.S. Department of Energy, the Copper Development Association, the Washington State University Energy Program, the National Electrical Manufacturers Association, nor any of their contractors, subcontractors, or employees makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process described in this guidebook. In addition, no endorsement is implied by the use of examples, figures, or courtesy photos. PREMIUM EFFICIENCY MOTOR SELECTION AND APPLICATION GUIDE ACKNOWLEDGMENTS The Premium Efficiency Motor Selection and Application Guide and its companion publication, Continuous Energy Improvement in Motor-Driven Systems, have been developed by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) with support from the Copper Development Association (CDA). The authors extend thanks to the EERE Advanced Manufacturing Office (AMO) and to Rolf Butters, Scott Hutchins, and Paul Scheihing for their support and guidance. Thanks are also due to Prakash Rao of Lawrence Berkeley National Laboratory (LBNL), Rolf Butters (AMO and Vestal Tutterow of PPC for reviewing and providing publication comments. The primary authors of this publication are Gilbert A. McCoy and John G. Douglass of the Washington State University (WSU) Energy Program. Helpful reviews and comments were provided by Rob Penney of WSU; Vestal Tutterow of Project Performance Corporation, and Richard deFay, Project Manager, Sustainable Energy with CDA.
    [Show full text]
  • The Most Important Maglev Applications
    Hindawi Publishing Corporation Journal of Engineering Volume 2013, Article ID 537986, 19 pages http://dx.doi.org/10.1155/2013/537986 Review Article The Most Important Maglev Applications Hamid Yaghoubi Iran Maglev Technology (IMT), Tehran 1997857631, Iran Correspondence should be addressed to Hamid Yaghoubi; [email protected] Received 5 December 2012; Accepted 19 February 2013 Academic Editor: Run-Cang Sun Copyright © 2013 Hamid Yaghoubi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The name maglev is derived from magnetic levitation. Magnetic levitation is a highly advanced technology. It has various uses.The common point in all applications is the lack of contact and thus no wear and friction. This increases efficiency, reduces maintenance costs, and increases the useful life of the system. The magnetic levitation technology can be used as an efficient technology inthe various industries. There are already many countries that are attracted to maglev systems. Many systems have been proposed in different parts of the worlds. This paper tries to study the most important uses of magnetic levitation technology. The results clearly reflect that the maglev can be conveniently considered as a solution for the future engineering needs of the world. 1. Introduction Another means of using a moving magnet to circumvent Earnshaw’srule and achieve full levitation is to move the mag- In Gulliver’s Travels (1726), Jonathan Swift described the net in the presence of an electrical conductor, thereby induc- maglev island of Laputa, which was capable of achieving ing eddy currents in the conductor and associated repulsive levitation heights of several kilometers.
    [Show full text]
  • Permanent Magnet Servomotor and Induction Motor Considerations
    Permanent Magnet Servomotor and Induction Motor Considerations Kollmorgen B-104 PM Brushless Servomotor at 0.4 HP Kollmorgen M-828 PM Brushless Rotor Kollmorgen B-802 PM Brushless Servomotor at 15 HP Kollmorgen B-808 PM Brushless Rotor Permanent Magnet Servomotor and Induction Motor Considerations 1 Lee Stephens, Senior Motion Control Engineer Permanent Magnet Servomotor and Induction Motor Considerations Motion long considered a mainstay of induction motors, encroachment in the area of 50 HP and greater have been seen recently for some applications by permanent magnet (PM) servomotors. These applications usually have dynamic considerations that require position-time closed loop and high accelerations. When accelerating large loads, permanent magnet servomotors can work with very high load to inertia ratios and still maintain performance requirements. Having a lower inertia typically will allow for less permanent magnet motor can result in a greater torque energy wasted within the motor. Torque (τ), is the density than an equivalent induction system. If size product of inertia (j) and rotary acceleration (α). If you matters, then perhaps a system should use one require inertia matching, ½ of your energy is wasted technology over another. Speaking of size, the inertia accelerating the motor alone. If the inertia ratio from ratio can be an important figure of merit should motor to load is large, then control schemes must be dynamic needs arise. If you are going to have high dynamic enough to prevent the larger load from driving accelerations and decelerations, the size of the rotor the motor as opposed to the motor controlling the load. will significantly increase the inertia and decrease the Tradeoffs and knowing what can be negotiated.
    [Show full text]
  • Special Purpose Machines
    SPECIAL PURPOSE MACHINES D.VENKATESH G.MADAN L6EE924 Y5EE840 EMAIL: [email protected] EMAIL:[email protected] Phone: 9963510494 Phone: 9963510494 R.V.R & J.C.COLLEGE OF ENGINEERING Chandramoulipuram Chowdavram GUNTUR - 19 ABSTRACT: Day by day the interest on Nano generator special machines increases. Because Researchers have these machines serves for several demonstrated a prototype nanometer- applications.For instance,the nano scale generator that produces continuous generator could drive biological sensors direct-current electricity by harvesting by making use of wind energy or water mechanical energy from such flow,eliminating the need for external environmental sources as ultrasonic batteries.This not only reduces the waves, mechanical vibration or blood device cost but also at the same time flow. The nanogenerators take advantage reduces the entire equipment size. of the unique coupled piezoelectric and Integrated starter generator semiconducting properties of zinc oxide which is used in electric vehicles acts as nanostructures, which produce small a bidirectional energy converter as a electrical charges. motor when powered by the battery or a generator when driven by the engine.Linear motors are used to propel high speed MagLev trains.Micro motors plays an important role in computer hard drives,optics,sensors and actuators.A special type of outer rotor motors used to drive the polygonal rotating mirrors which are mounted directly on the rotor in laser printers. Our paper tries to introduce some of these machines and their applications in various fields.The recent developed technology of nano Fabrication begins with growing an generators is included and its working is array of vertically-aligned nanowires also explained.
    [Show full text]
  • Rita MBAYED Contribution to the Control of the Hybrid Excitation
    Année 2012 UNIVERSITE DE CERGY PONTOISE THESE Présentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE CERGY PONTOISE Ecole doctorale: Sciences et Ingénierie Spécialité: Génie Electrique Soutenance publique prévue le 12 Décembre 2012 Par Rita MBAYED Contribution to the Control of the Hybrid Excitation Synchronous Machine for Embedded Applications JURY Rapporteurs : Prof. Gérard CHAMPENOIS Université de Poitiers Prof. Eric SEMAIL Ecole Nationale d'Arts et Métiers ParisTech Examinateurs : Prof. Francis LABRIQUE Université Catholique de Louvain Prof. Mohamed GABSI Ecole Normale Supérieure Cachan Dr. Vincent LANFRANCHI Université de Technologie de Compiègne Directeur de thèse : Prof. Eric MONMASSON Université de Cergy Pontoise Co-directeurs : Prof. GeorgesSALLOUM Université Libanaise Dr. Lionel VIDO Université de Cergy Pontoise Laboratoire SATIE - UCP/UMR 8029, 1 rue d’Eragny, 95031 Neuville sur Oise France The secret is comprised in three words: Work, finish, publish. Michael Faraday Ere many generations pass, our machinery will be driven by a power obtainable at any point of the universe. This idea is not novel. Men have been led to it long ago by instinct or reason; it has been expressed in many ways, and in many places, in the history of old and new. We find it in the delightful myth of Antheus, who derives power from the earth; we find it among the subtle speculations of one of your splendid mathematicians and in many hints and statements of thinkers of the present time. Throughout space there is energy. Is this energy static or kinetic? If static our hopes are in vain; if kinetic - and this we know it is, for certain - then it is a mere question of time when men will succeed in attaching their machinery to the very wheelwork of nature.
    [Show full text]
  • Apermanent Magnet Synchronous Motor for an Electric Vehicle
    TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 A PERMANENT MAGNET SYNCHRONOUS MOTOR FOR AN ELECTRIC VEHICLE - DESIGN ANALYSIS Yung-kang Chin Stockholm 2004 ELECTRICAL MACHINES AND POWER ELECTRONICS DEPARTMENT OF ELECTRICAL ENGINEERING ROYAL INSTITUTE OF TECHNOLOGY SWEDEN Submitted to the School of Computer Science, Electrical Engineering and Engineering Physics, KTH, in partial fulfilment of the requirements for the degree of Technical Licentiate. Copyright © Yung-kang Chin, Sweden, 2004 Printed in Sweden Universitetsservice US AB TRITA-ETS-2004-04 ISSN 1650-674x ISRN KTH/R 0404-SE ISBN 91-7283-803-5 PPrreeffaaccee This technical licentiate thesis deals with the design analysis of a permanent magnet synchronous motor for an electric vehicle. A thesis is a report that conveys the used theoretical approach and the experimental results on a specific problem in a specific area. A thesis could also develop a purely theoretical approach to a topic. It is my aim as the author to present these findings and theoretical approaches clearly and effectively with this concise report. Never Say Never! This is the phrase I have always referred to and it even appears on my screensaver. When I started my doctoral study at KTH, my plan was to write my doctoral dissertation directly without taking the licentiate examination. Well, as I am now writing the preface of my licentiate thesis, my thought has obviously changed through out the duration of the project work. A good friend of mine, who has a PhD degree in Physics himself, once told me that working on a doctoral degree is just like walking through a long dark tunnel.
    [Show full text]