Rita MBAYED Contribution to the Control of the Hybrid Excitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naval Postgraduate School
NPS-97-06-003 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA SHIP ANTI BALLISTIC MISSILE RESPONSE (SABR) by LT Allen P. Johnson LT David C. Leiker LT Bryan Breeden ENS Parker Carlisle LT Willard Earl Duff ENS Michael Diersing LT Paul F. Fischer ENS Ryan Devlin LT Nathan Hornback ENS Christopher Glenn TDSI Students LT Chris Hoffmeister, USN LT John Kelly, USN LTC Tay Boon Chong, SAF LTC Yap Kwee Chye, SAF MAJ Phang Nyit Sing, SAF CPT Low Wee Meng, SAF CPT Ang Keng-ern, SAF CPT Ohad Berman, IDF Mr. Fann Chee Meng, DSTA, Singapore Mr. Chin Chee Kian, DSTA, Singapore Mr. Yeo Jiunn Wah, DSTA, Singapore June 2006 Approved for public release; distribution is unlimited. Prepared for: Deputy Chief of Naval Operations for Warfare Requirements and Programs (OPNAV N7), 2000 Navy Pentagon, Rm. 4E392, Washington, D.C. 20350-2000 THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. -
Evaluation of Direct Torque Control with a Constant-Frequency Torque Regulator Under Various Discrete Interleaving Carriers
electronics Article Evaluation of Direct Torque Control with a Constant-Frequency Torque Regulator under Various Discrete Interleaving Carriers Ibrahim Mohd Alsofyani and Kyo-Beum Lee * Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu Suwon 16499, Korea * Correspondence: [email protected]; Tel.: +82-31-219-2376 Received: 25 June 2019; Accepted: 20 July 2019; Published: 23 July 2019 Abstract: Constant-frequency torque regulator–based direct torque control (CFTR-DTC) provides an attractive and powerful control strategy for induction and permanent-magnet motors. However, this scheme has two major issues: A sector-flux droop at low speed and poor torque dynamic performance. To improve the performance of this control method, interleaving triangular carriers are used to replace the single carrier in the CFTR controller to increase the duty voltage cycles and reduce the flux droop. However, this method causes an increase in the motor torque ripple. Hence, in this work, different discrete steps when generating the interleaving carriers in CFTR-DTC of an induction machine are compared. The comparison involves the investigation of the torque dynamic performance and torque and stator flux ripples. The effectiveness of the proposed CFTR-DTC with various discrete interleaving-carriers is validated through simulation and experimental results. Keywords: constant-frequency torque regulator; direct torque control; flux regulation; induction motor; interleaving carriers; low-speed operation 1. Introduction There are two well-established control strategies for high-performance motor drives: Field orientation control (FOC) and direct torque control (DTC) [1–3]. The FOC method has received wide acceptance in industry [4]. Nevertheless, it is complex because of the requirement for two proportional-integral (PI) regulators, space-vector modulation (SVM), and frame transformation, which also needs the installation of a high-resolution speed encoder. -
Direct Torque Control of Induction Motors
DIRECT TORQUE CONTROL FOR INDUCTION MOTOR DRIVES MAIN FEATURES OF DTC · Decoupled control of torque and flux · Absence of mechanical transducers · Current regulator, PWM pulse generation, PI control of flux and torque and co-ordinate transformation are not required · Very simple control scheme and low computational time · Reduced parameter sensitivity BLOCK DIAGRAM OF DTC SCHEME + _ s* s j s + Djs _ Voltage Vector s * T + j s DT Selection _ T S S S s Stator a b c Torque j s s E Flux vs 2 Estimator Estimator 3 s is 2 i b i a 3 Induction Motor In principle the DTC method selects one of the six nonzero and two zero voltage vectors of the inverter on the basis of the instantaneous errors in torque and stator flux magnitude. MAIN TOPICS Þ Space vector representation Þ Fundamental concept of DTC Þ Rotor flux reference Þ Voltage vector selection criteria Þ Amplitude of flux and torque hysteresis band Þ Direct self control (DSC) Þ SVM applied to DTC Þ Flux estimation at low speed Þ Sensitivity to parameter variations and current sensor offsets Þ Conclusions INVERTER OUTPUT VOLTAGE VECTORS I Sw1 Sw3 Sw5 E a b c Sw2 Sw4 Sw6 Voltage-source inverter (VSI) For each possible switching configuration, the output voltages can be represented in terms of space vectors, according to the following equation æ 2p 4p ö s 2 j j v = ç v + v e 3 + v e 3 ÷ s ç a b c ÷ 3 è ø where va, vb and vc are phase voltages. -
Improved Direct Torque Control of Doubly Fed Induction Motor Using Space Vector Modulation
Received: December 22, 2020. Revised: February 26, 2021. 177 Improved Direct Torque Control of Doubly Fed Induction Motor Using Space Vector Modulation Mohammed El Mahfoud1* Badre Bossoufi1 Najib El Ouanjli2 Mahfoud Said2 Mohammed Taoussi2 1Laboratory of engineering Modeling and Systems Analysis, SMBA University Fez, Morocco 2Technologies and Industrial Services Laboratory, SMBA University Fez, Morocco * Corresponding author’s Email: [email protected] Abstract: This research paper deals with the improved direct torque control (DTC) of a doubly fed induction machine (DFIM) operating in motor mode. The conventional DTC is a powerful tool to ensure robustness and good torque dynamics. However, the variable switching frequency as well as the presence of torque and flux ripples due to the use of hysteresis controllers are the major drawbacks of this strategy. For this purpose, the control by space vector Modulation (SVM) is developed to improve DTC performance, by replacing hysterisis controllers by PI controllers to reduce electromagnetic flux ripple and torque ripple in order to minimize mechanical vibration and acoustic noise while maintaining the benefits of DTC control. The proposed control algorithm is simulated and tested in MATLAB/Simulink. A comparative analysis between this technique and conventional DTC is carried out, highlighting the efficiency of the proposed improvement approach. The performance indexes and comparative results show the effectiveness of the proposed control in reducing torque ripple and stator and rotor flux ripple by up to 43%, 42% and 31%, respectively, resulting in Total Harmonic Distortion (THD%) 61% lower, in addition the switching frequency is controlled, and the Rejection Time is improved by more than 76%. -
Single-Phase Line Start Permanent Magnet Synchronous Motor with Skewed Stator*
POWER ELECTRONICS AND DRIVES Vol. 1(36), No. 2, 2016 DOI: 10.5277/PED160212 SINGLE-PHASE LINE START PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SKEWED STATOR* MACIEJ GWOŹDZIEWICZ, JAN ZAWILAK Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: [email protected], [email protected] Abstract: The article deals with single-phase line start permanent magnet synchronous motor with skewed stator. Constructions of two physical motor models are presented. Results of the motors run- ning properties are analysed. Keywords: single-phase motor, permanent magnet, skew, vibration 1. INTRODUCTION Single-phase induction motors almost always have skewed rotors. It is a simple and effective solution in limitation of the motor vibration, noise and torque pulsation. In the case of line start permanent magnet synchronous motors skewed rotor is ex- tremely difficult to manufacture due to interior permanent magnets. Skewed stator is less complicated in comparison with skewed rotor [3], [4], [7], [8]. During many tests of single-phase line start permanent magnet synchronous motor physical models The authors noticed that vibration is one of the main drawbacks of these motors [1], [2]. It prompted them to construct and build a single-phase line start permanent magnet motor with skewed stator. 2. MOTOR CONSTRUCTION Two dimensional field-circuit models of the single-phase line start permanent magnet synchronous motor were applied in Maxwell software. The models are based on the mass production single-phase induction motor Seh 80-2B type: rated power Pn = 1.1 kW, rated voltage Un = 230 V, rated frequency fn = 50 Hz, number of pole * Manuscript received: September 7, 2016; accepted: December 7, 2016. -
Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions
Understanding Permanent Magnet Motor Operation and Optimized Filter Solutions June 15, 2016 Todd Shudarek, Principal Engineer MTE Corporation N83 W13330 Leon Road Menomonee Falls WI 53154 www.mtecorp.com Abstract Recent trends indicate the use of permanent magnet (PM) motors because of its energy savings over induction motors. PM motors offer energy savings, higher power densities, and improved control. The upfront cost of a PM motor may be higher than an induction motor, but the total cost of ownership may be lower. However, a PM motor system brings design challenges in terms of selecting the best variable frequency drive (VFD) as well as a filter to protect the motor. A PM motor requires the use of a VFD to start and operate. The best VFDs will need to operate at higher switching frequencies to meet the higher fundamental frequencies of the PM motors. In turn, the PM motor will need to be protected from power distortion, harmonics, and overheating. While a traditional filter is de-rated to meet the higher frequencies, this paper will demonstrate that, by nature of the operation of a PM motor, an appropriately design filter that operates for higher switching and fundamental frequencies will reduce the size, weight, and cost of the system. Introduction special considerations when specifying a filter for a PM motor system, specifically the use of Historically induction motors have been used in higher switching frequencies and filters. a variety of industrial applications. Recent trends indicate a shift toward permanent magnet (PM) motors which offer up to 20% energy savings, Induction Motor Operation higher power densities, and improved control. -
Direct Torque Control of Induction Motor Using Fuzzy Logic Controller
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 2 (January 2014), PP.56-61 Direct Torque Control of Induction Motor Using Fuzzy Logic Controller 1 2 C.Vignesh, S.Shantha Sheela, 3 4 E.Chidam Meenakchi Devi, R.Balachandar 1,2,3,4 M.E Power Electronics and Drives, Sri Subramanya college of Engineering and Technology,India Abstract:- In this paper, Direct Torque Control (DTC) approaches of induction motor (IM) drives has been proposed and it is extensively implemented in industrial variable speed applications. This paper presents a unique direct torque control (DTC) approach for induction motor (IM) drives fed by using a fuzzy logic controller. The intention is to develop a low-ripple high-performance induction motor (IM) drive. The presented scheme is founded on the emulation of the operation of the conservative six switch three-phase inverter. It routines the dc current to re-construct the stator currents desired to estimate the motor flux and the electromagnetic torque. This methodology has been adopted in the design of the vector selection table of the suggested DTC approach through fuzzy logic controller. The modelling and simulation results of direct torque control of induction motor have been confirmed by means of the software package MATLAB/Simulink. Keywords:- Direct Torque Control, Fuzzy Logic Controller, Induction Motor, Direct Torque Control Fed Induction Motor. I. INTRODUCTION For high power industrial applications it is desirable to use AC motor drive instead of DC drive. But due to inherent torque coupling present in AC motor, the dynamic response becomes sluggish. -
Vector Control of an Induction Motor Based on a DSP
Vector Control of an Induction Motor based on a DSP Master of Science Thesis QIAN CHENG LEI YUAN Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2011 Vector Control of an Induction Motor based on a DSP QIAN CHENG LEI YUAN Department of Energy and Environment Division of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2011 Vector Control of an Induction Motor based on a DSP QIAN CHENG LEI YUAN © QIAN CHENG LEI YUAN, 2011. Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology SE–412 96 G¨oteborg Sweden Telephone +46 (0)31–772 1000 Chalmers Bibliotek, Reproservice G¨oteborg, Sweden 2011 Vector Control of an Induction Motor based on a DSP QIAN CHENG LEI YUAN Department of Energy and Environment Division of Electric Power Engineering Chalmers University of Technology Abstract In this thesis project, a vector control system for an induction motor is implemented on an evaluation board. By comparing the pros and cons of eight candidates of evaluation boards, the TMS320F28335 DSP Experimenter Kit is selected as the digital controller of the vector control system. Necessary peripheral and interface circuits are built for the signal measurement, the three-phase inverter control and the system protection. These circuits work appropriately except that the conditioning circuit for analog-to-digital con- version contains too much noise. At the stage of the control algorithm design, the designed vector control system is simulated in Matlab/Simulink with both S-function and Simulink blocks. The simulation results meet the design specifications well. -
Axial Field Permanent Magnet Machines with High Overload Capability for Transient Actuation Applications
THE UNIVERSITY OF SHEFFIELD Axial field permanent magnet machines with high overload capability for transient actuation applications By Jiangnan Gong A Thesis submitted for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering The University of Sheffield. JANUARY 2018 ABSTRACT This thesis describes the design, construction and testing of an axial field permanent magnet machine for an aero-engine variable guide vane actuation system. The electrical machine is used in combination with a leadscrew unit that results in a minimum torque specification of 50Nm up to a maximum speed of 500rpm. The combination of the geometry of the space envelope available and the modest maximum speed lends itself to the consideration of an axial field permanent magnet machines. The relative merits of three topologies of double-sided permanent magnet axial field machines are discussed, viz. a slotless toroidal wound machine, a slotted toroidal machine and a yokeless axial field machine with separate tooth modules. Representative designs are established and analysed with three-dimensional finite element method, each of these 3 topologies are established on the basis of a transient winding current density of 30A/mm2. Having established three designs and compared their performance at the rated 50Nm point, further overload capability is compared in which the merits of the slotless machine is illustrated. Specifically, this type of axial field machine retains a linear torque versus current characteristic up to higher torques than the other two topologies, which are increasingly affected by magnetic saturation. Having selected a slotless machine as the preferred design, further design optimization was performed, including detailed assessment of transient performance. -
Abstract Controlling Ac Motor Using Arduino
ABSTRACT CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER Nithesh Reddy Nannuri, M.S. Department of Electrical Engineering Northern Illinois University, 2014 Donald S Zinger, Director Space vector modulation (SVM) is a technique used for generating alternating current waveforms to control pulse width modulation signals (PWM). It provides better results of PWM signals compared to other techniques. CORDIC algorithm calculates hyperbolic and trigonometric functions of sine, cosine, magnitude and phase using bit shift, addition and multiplication operations. This thesis implements SVM with Arduino microcontroller using CORDIC algorithm. This algorithm is used to calculate the PWM timing signals which are used to control the motor. Comparison of the time taken to calculate sinusoidal signal using Arduino and CORDIC algorithm was also done. NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS DECEMBER 2014 CONTROLLING AC MOTOR USING ARDUINO MICROCONTROLLER BY NITHESH REDDY NANNURI ©2014 Nithesh Reddy Nannuri A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL ENGINEERING Thesis Director: Dr. Donald S Zinger ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Donald S. Zinger for his continuous support and guidance in this thesis work as well as throughout my graduate study. I would like to thank Dr. Martin Kocanda and Dr. Peng-Yung Woo for serving as members of my thesis committee. I would like to thank my family for their unconditional love, continuous support, enduring patience and inspiring words. Finally, I would like to thank my friends and everyone who has directly or indirectly helped me for their cooperation in completing the thesis. -
Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR ______
Electronics Mechanics Computers The Ohio State University Mechatronic Systems Program Design of 42V/3000W PERMANENT MAGNET SYNCHRONOUS GENERATOR _________________________________ By Guruprasad Mahalingam , M.S. Student Prof. Ali Keyhani Mechatronics System Laboratory DEPARTMENT OF ELECTRICAL ENGINEERING THE OHIO STATE UNIVERSITY [email protected] Phone: 614-292-4430 December, 2000 120 Acknowledgments I wish to thank my adviser, Professor Ali Keyhani, for his insight, support and guidance which made this work possible. This work was supported in part by the Delphi Automotive Systems, The National Science Foundation: Grant ESC 9722844, 9625662, Department of Electrical Engg., The Ohio State University. I also wish to thank Ford Motor Company, TRW, AEP which support the work at Mechatronics Systems Lab. I wish to acknowledge Mongkol Konghirun, Coy Brian Studer whose earlier work in the field was a ready reference to my work. My sincere thanks to Dr. Tomy Sebastian, Delphi Saginaw Steering Systems for his support, advice, and interest in my research; Mr. Philippe Wendling from Magsoft Corporation for his technical assistance. 121 CHAPTER 1 Machine Design - Introduction And Basics 1.1 Background Transforming the classical mechanical and hydraulic systems into electric systems to provide better performance and customer satisfaction is the current trend in the automotive industry Eg. electric power steering systems, electric brakes etc.. The penalty is the increase in demand for electrical power. It is estimated that the steady state power requirement in the typical luxury class vehicle would rise from the current level of 1500 W to about 3000 W and to about 7000 W for a hybrid electric vehicle by the year 2005 [16,17,2]. -
A DSP Based Servo System Using Permanent Magnet Synchronous
A DSP Based Servo System Using Permanent Magnet Synchronous Motors PMSM Longya Xu, Minghua Fu, and Li Zhen The Ohio State University Department of Electrical Engineering 2015 Neil Avenue Columbus, OH 43210 Abstract- A digital servo system using a Digital Signal Pro cessor DSP is presented in this pap er. A Permanent Magnet Synchronous Motor PMSM with rotor p osition enco der and Hall sensor is used. The eld oriented vector control technique is employed to achieve robust p erformance and fast torque resp onse. The system uses p osition and sp eed regulations as the system outer lo op, and the current regulation with vector control as the inner lo op. A DSP system using TI's TMS320C240 is develop ed, and the prop osed digital control strategy is implemented in the DSP. Key Words: Vector Control, Motion Control, Servo System, Digital Control, Permanent Mag- net Synchronous Motor PMSM, Digital Signal Pro cessor DSP I. Intro duction Precise motion control plays an imp ortant role in various areas such as automation industry, semiconductor industry, etc. Permanent magnet synchronous motors PMSM are ideal for advanced motion control systems for their p otentials of high eciency, high torque to current ratio, and low inertia. Advances in Digital Signal Pro cessors DSP have greatly enhanced the p otential of PMSM in servo applications. Digital control can b e implemented in the DSP, which makes it sup erior to analog based stepp er control, since the controller is much more compact, reliable, and exible. High p erformance of PMSM can be obtained by means of eld oriented vector control, which is only realizable in a digital based system.